Ta có: a < b => 2a < a + b
c < d => 2c < c + d
m < n => 2m < m +n
suy ra: 2 ( a + c + m) < a + b + c + d + m + n
=> \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Vì a < b
c < d
m < n
=> a + c + m < b + d + n
=> 2 ( a + c + m ) < b + d + n + a + c + m
=> \(\frac{a+c+m}{2\left(a+c+m\right)}\)\(>\)\(\frac{a+c+m}{a+b+c+d+m+n}\)
=> \(\frac{1}{2}>\frac{a+c+m}{a+b+c+d+m+n}\)