Bài 1: 1) Trên tia Ax lấy các điểm B, C, D theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.
a) Tính các tỷ số số AB/ BC và BC/CD
b) Chứng minh BC2 = AB.CD
2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.
a) Tính tỉ số AB/CD
b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD
Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.
a) Chứng minh AD/BD = AE/EC
b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.
Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.
a) Chứng minh AD/AB = AE/AC
b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC
Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:
a) Tỷ số DE/AE
b) Độ dài các đoạn thẳng AE, DE và AD.
Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC
b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.
Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.
a) Tính tỉ số AB/CD
b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD
Cho hình vuông ABCD có cạnh bằng a, lấy E là 1 điểm bất kì trên cạnh BC , hai đường thẳng AE và CD cắt nhau tại F , vẽ tia Ax thẳng góc với AE tại A cắt CD tại I. C/M \(\frac{1}{AB^2}+\frac{1}{AE^2}=\frac{1}{AF^2}\)
Bài 1 : Cho tam giác ABC. Gọi G là trọng tâm của tam giác đó. Qua điểm G vẽ đường tahwngr song song với AB và AC cắt BC lần lượt tại D và E
CMR a, \(\frac{BD}{BC}=\frac{1}{3}\)
b, BD=DE=EC
Bài 2 : Cho hình bình hành ABCD. Vẽ đường thẳng d. Cắt các cạnh AB, AD và đường chéo AC của hình bình hành đó theo thứ tự tại E, F và O
CMR: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)
Các bạn giúp mk nha
Cho 3 điểm A, B, C theo thứ tự nằm trên đường thẳng d biết AB < BC. Trong cùng một nửa mặt phẳng bờ là đường thẳng d vẽ 2 tam giác đều ADB và BEC. Gọi M, N, P, Q, I theo thứ tự là trung điểm của các đoạn thẳng BD, AE, BE, CD và DE.
a) Chứng minh 3 điểm I, M, N thẳng hàng ; I, Q, P thẳng hàng
b) Chứng minh tứ giác MNPQ là hình thanh cân
c) Chứng minh NQ=1/2 DE
Cho hình thang ABCD (AB // CD) Gọi O là giao điểm của hai đường chéo AC và BD. Qua O kẻ đường thẳng song song AB, cắt AD và BC theo thứ tự E và G
a) Ch/m : OA.OD = OB.OC
b) CHo AB = 5cm, CD =10cm và OC=6cm. Hãy tính OA, OE
c) CMR : \(\frac{1}{OE}=\frac{1}{OG}=\frac{1}{AB}+\frac{1}{CD}\)
Trên đường thẳng d lấy 4 điểm A, B, C, D theo thứ tự đó sao cho A B B C = 3 5 v à B C C D = 5 6 .
a) Tính tỉ số AB/CD.
b) Cho biết AD = 28cm. Tính độ dài các đoạn thẳng AB, BC và CD
1) Cho hình thang ABCD(AB//CD). Một đường thẳng song song với 2 đáy, cắt các cạnh bên AD và BC theo thứ tự ở E và F. Tính FC, biết AE=4cm,ED=2cm,BF=6cm
2) Cho tam giác ABC. Điểm D thuộc cạnh BC sao cho BD/BC =1/4. Điểm E thuộc đoạn thẳng AD sao cho AE=2ED. Tính tỉ số: AK/KC
Trên 1 đường thẳng lấy A,B,C,D theo thứ tự . Biết AB/BC=3/5;BC/CD=5/7.Cho AD=30cm . Tính AB/CD,AB,BC,CD