Bài 1: cho đường tròn (O; R), M là một điểm nằm ngoài đường tròn, vẽ tiếp tuyến MA, MB (A, B là tiếp điểm). D thuộc cung lopwsn AB (D không trùng với A, B và điểm chính giữa của cung AB). MD giao với đường tròn (O; R) tại C.
a) Gọi Mo giao với AB tại H. Chứng minh rằng: MH.MO = MC.MD.
b) CMR nếu MB // AD thì AC đi qua trọng tâm G của tam giác MAB.
c) Kẻ đường kính BK của đường tròn (o; R), MK giao với AB tại I. Tính bán kính của đường tròn ngoại tiếp tam giác MBI theo R với OM = 2R.
Giải hộ mình câu b và c nhe :))
Cho (O) và dây AB không phải đường kính. Gọi M là điểm chính giữa cung AB và C là điểm bất kì thuộc AB. Tia CM cắt (O) tại D. Chứng minh:
a. MA2= MC.MD.
b. MB.BD= BC.MD.
c. Đường tròn ngoại tiếp tam giác BCD tiếp xúc với MB tại B.
d. Khi C di động trên AB thì các đường tròn (O1) và (O2) ngoại tiếp tam giác BCD và tam giác ACD có tổng bán kính không đổi.
cho tam giác ABC vuông tại A .Dựng ở miền ngoài tam giác ABC các hình vuông ABHK,ACDE
1.chứng minh H,A,D thẳng hàng
2.đường thẳng HD cắt đường tròn ngoại tiếp tam giác ABC tại F. chứng minh tam giác FBC vuông cân
3. cho biết góc ABC>45 độ . gọi M là giao điểm của BF và ED . chứng minh 5 điểm B,K,E,M,C cùng nằm trên một đường tròn
4. chứng minh MC là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
Từ một điểm M bên ngoài đường tròn (O) vẽ cát tuyến MCD không đi qua tâm O và hai tiếp tuyến MA, MB đến đường tròn (O), ở đây A, B là các tiếp điểm và C nằm giữa M, D.
a) Chứng minh MA2 = MC.MD ;
b) Gọi I là trung điểm của CD. Chứng minh rằng 5 điểm M, A, O, I, B cùng nằm trên một đường tròn ;
c) Gọi H là giao điểm của AB và MO. Chứng minh tứ giác CHOD nội tiếp được đường tròn. Suy ra AB là đường phân giác của góc CHD ;
d) Gọi K là giao điểm của các tiếp tuyến tại C và D của đường tròn (O). Chứng minh A, B, K thẳng hàng.
Cho tam giác ABC và M là trung điểm BC. Tiếp tuyến tại B của đường tròn ngoại tiếp tam giác ABM cắt tiếp tuyên tại điểm C của đường tròn ngoại tiếp tam giác ACM tại D.
a) Chứng minh tứ giác ABDC là tứ giác nội tiếp
b) Gọi K là giao điểm của tia Am với đường tròn ngoại tiếp tứ giác ABDC. Chứng minh KD // BC
c) Gọi E là điểm đối xứng với D qua BC. Chứng minh M,A,E thẳng hàng
Cho tam giác ABC đều ngoại tiếp (O), M là một điểm bất kì trên cung nhỏ BC, AM giao BC tại D. Chứng minh rằng:
a, MA=MB+MC
b, MC là tiếp tuyến của đường tròn ngoại tiếp tam giác ADC
c, Khi điểm M di chuyển trên cung nhỏ BC thì tổng 2 bán kính của 2 đường tròn ngoại tiếp tam giác ABD và ACD không đổi
Bài 1: Cho đường tròn (O) và điểm M ở ngoài đường tròn. Từ M kẻ tiếp tuyến MA,MB với đường tròn (A,B là tiếp điểm ), tia OM cắt đường tròn tại C, tiếp tuyến tại C cắt tiếp tuyến MA,MB tại P và Q. Chứng minh rằng diện tích tam giác MPQ lớn hơn một nửa diện tích tam giác ABC.
Bài 2: Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ nửa đường tròn (O) đường kính AB và các tiếp tuyến Ax, By. Qua điểm M thuộc một nửa đường tròn này, kẻ tiếp tuyến cắt Ax, By theo thứ tự tại C và D. Gọi N là giao điểm của AD và BC. CMR: MN vuông góc với AB
Cho tam giác ABC vuông tại A, có đường cao AH ( AB < AC ). Vẽ đường tròn (B;
BA) cắt đường thẳng AH tại D) (D khác A).
a) Chứng minh H là trung điểm của AD và tam giác CAD cân.
b) Chứng minh CD là tiếp tuyến của đường tròn (B; BA).
c) Vẽ đường kính AK của đường tròn (B;BA). Từ K vẽ đường thẳng vuông góc với AK cắt
đường thẳng AD tại N. Chứng minh DN.DC = DB.DK
d) Từ điểm M thuộc cung nhỏ AD của đường tròn (B;BA) vẽ tiếp tuyến cắt AC và CD lần
lượt tại E và F. Chứng minh rằng: Nếu diện tích tứ giác ABDC gấp 4 lần diện tích tam giác EBF
thì CE +CF = 3EF .
Cho đường tròn ( O;R ) và dây CD cố định . Trên tia đối CD lấy điểm M . Qua M kẻ 2 tiếp tuyến MA và MB tới đường tròn ( A,B là tiếp điểm, A thuộc cung lớn CD . Gọi I là trung điểm của CD.
a ) chứng minh MA^2 = MC*MD
b) gọi H,P lần lượt là giao điểm của AB với MO,CD . Chứng minh tứ giác OHPI nội tiếp .
c) chứng minh tam giác MHC đồng dạng với tam giác MDO và MC*PD=MD*PC
d) kẻ dây DE của đường tròn ( O,R ) sao cho DE song song AB . Chứng minh C,H,E thẳng hàng .