Cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2=3\).Tìm GTNN của M=\(\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
Cho 3 số thực x, y, z thỏa mãn \(x^2+y^2+z^2=3\). Tìm giá trị nhỏ nhất của biểu thức :
\(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
Cho x,y,z là 3 số thực dương thỏa mãn: x+y+z=3. Tìm GTNN
\(Q=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=3. Tìm GTNN của \(P=\frac{x+1}{y^2+1}+\frac{y+1}{z^2+1}+\frac{z+1}{x^2+1}\)
Cho các số thực không âm x, y, z thỏa mãn \(x^2+y^2+z^2=2\). Tìm giá trị lớn nhất của biểu thức: \(M=\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}\)
cho x,y,z là các số thực thỏa mãn -1<=x,y,z <=1 và x+y+z =o. tìm GTNN biểu thức :P=căn bậc 2 1+x+y^2 +căn bậc 2 của 1+y+z^2 + căn bậc 2 của 1+z+x^2
1) Cho x,y,z>0 thoả mãn : xyz<=1. Chứng minh rằng: \(\frac{x\left(1-y^3\right)}{y^3}\)+ \(\frac{y\left(1-z^3\right)}{z^3}\)+\(\frac{z\left(1-x^3\right)}{x^3}\)>=0
2) Cho x, y, z là các số thực dương thỏa mãn x ≥ z. CMR: xz /(y^2 + yz) + y^2 / (xz + yz) + (x + 2z)/(x + z) ≥ 5/2
Cho 3 số thực dương x, y, z thỏa mãn x+y+z=1
Chứng minh rằng \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
cho 3 số dương x,y,z thỏa mãn x+y+z=3.
chứng minh: \(\dfrac{x}{1+y^2}+\dfrac{y}{1+z^2}+\dfrac{z}{1+x^2}\ge\dfrac{3}{2}\)