Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Neet

cho 3 số thực dương a,b,c t/m \(2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{3}\)

tìm max \(P=\frac{1}{\sqrt{6a^2+3b^2}}+\frac{1}{\sqrt{6b^2+3c^2}}+\frac{1}{\sqrt{6c^2+3a^2}}\)

Help

Akai Haruma
18 tháng 1 2017 lúc 15:39

Lời giải:

Để nhìn biểu thức cho đơn giản, ta đảo \((a,b,c)\mapsto \left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)\)

Bài toán trở thành:

Cho \(a,b,c>0\) thỏa mãn \(2(a^2+b^2+c^2)=ab+bc+ac+\frac{1}{3}\)

Tìm max của \(P=\sum\frac{ab}{\sqrt{6b^2+3a^2}}\)

--------------------------------------------------------------------------------

Áp dụng BĐt Cauchy-Schwarz:

\((6b^2+3a^2)(2+1)\geq (2\sqrt{3}b+\sqrt{3}a)^2\) \(\Rightarrow \frac{ab}{\sqrt{6b^2+3a^2}}\leq\frac{ab}{2b+a}\)

Thiết lập tương tự với các phân thức còn lại:

\(\Rightarrow P\leq \frac{ab}{2b+a}+\frac{bc}{2c+b}+\frac{ac}{2a+c}\) $(1)$

Áp dụng BĐT Cauchy-Schwarz: \(ab\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{a}\right)\geq \frac{9ab}{2b+a}\)

Tương tự... \(\Rightarrow \frac{ab}{2b+a}+\frac{bc}{2c+b}+\frac{ac}{2c+a}\leq \frac{a+b+c}{3}\) $(2)$

Mặt khác, ta biết rằng \((a+b+c)^2\geq 3(ab+bc+ac)\) nên từ đkđb \(2(a^2+b^2+c^2)=ab+bc+ac+\frac{1}{3}\)

\(\Rightarrow 2(a+b+c)^2=5(ab+bc+ac)+\frac{1}{3}\leq \frac{5(a+b+c)^2}{3}+\frac{1}{3}\)

\(\Rightarrow a+b+c\leq 1\) $(3)$

Từ \((1),(2),(3)\Rightarrow P\leq\frac{1}{3}\)

Dấu $=$ xảy ra khi $a=b=c=\frac{1}{3}$

Nguyễn Kim Thọ
21 tháng 1 2017 lúc 10:22

haha

Nguyễn Kim Thọ
21 tháng 1 2017 lúc 10:53

Đại số lớp 9


Các câu hỏi tương tự
Neet
Xem chi tiết
Trần Việt Linh
Xem chi tiết
Nguyễn Ngọc Tú Uyên
Xem chi tiết
Xuân Trà
Xem chi tiết
Trịnh Trọng Khánh
Xem chi tiết
Neet
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Hoài Đoàn
Xem chi tiết
Xuân Trà
Xem chi tiết