Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Huy Hoàng

Cho 3  số thực dương a,b,c thỏa mãn : \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015.\)

Tìm \(GTLN\) của biểu thức sau:  \(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)

Trần Phúc Khang
20 tháng 5 2019 lúc 11:47

Ta có:\(7\left(\frac{1}{a^2}+...\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2015\)

Mà \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le2015\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{6045}\)

\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+...\)

Mà \(\left(2+1\right)\left(2a^2+b^2\right)\ge\left(2a+b\right)^2\)(bất dẳng thức buniacoxki)

=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

Lại có \(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\le\frac{\sqrt{6045}}{3}\)

Vậy \(MaxP=\frac{\sqrt{6045}}{3}\)khi \(a=b=c=\frac{\sqrt{6045}}{2015}\)


Các câu hỏi tương tự
phan tuấn anh
Xem chi tiết
nguyễn thị ngọc trâm
Xem chi tiết
Nguyễn Hoàng Dũng
Xem chi tiết
Siêu Quậy Quỳnh
Xem chi tiết
☆☆《Thiên Phi 》☆☆
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
Đào Thu Hoà
Xem chi tiết
Kurosaki Akatsu
Xem chi tiết
Itachi Uchiha
Xem chi tiết