a+b+c=6
=>\(\left(a+b+c\right)^2=6^2=36\)
=>\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=36\)
=>\(2\left(ab+bc+ac\right)=36-12=24\)
=>ab+ac+bc=12
=>\(a^2+b^2+c^2=ab+bc+ac\)
=>\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
=>a=b=c
mà a+b+c=6
nên \(a=b=c=\dfrac{6}{3}=2\)
\(M=\left(a-3\right)^{2025}+\left(b-3\right)^{2025}+\left(c-3\right)^{2025}\)
\(=\left(2-3\right)^{2025}+\left(2-3\right)^{2025}+\left(2-3\right)^{2025}\)
=(-1)+(-1)+(-1)
=-3