\(ab+bc+ca=\dfrac{\left(a+b+c\right)^2-a^2-b^2-c^2}{2}\)
\(=\dfrac{9^2-53}{2}=\dfrac{28}{2}=14\)
\(ab+bc+ca=\dfrac{\left(a+b+c\right)^2-a^2-b^2-c^2}{2}\)
\(=\dfrac{9^2-53}{2}=\dfrac{28}{2}=14\)
Cho a,b,c là 3 số khác 0 thỏa mãn
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị biểu thức
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho biểu thức P =\(\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2a+2c-b\right)^2\)
1) Chứng minh P =\(9\left(a^2+b^2+c^2\right)\)
2)Nếu a,b,c là các số thực thỏa mãn ab + bc + ca = -1, tìm giá trị nhỏ nhất của biểu thức P
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
Áp dụng:Cho ba số a,b,c thỏa mãn a+b+c=2 và ab+bc+ca=-23.Tính giá trí của biểu thức a^2+b^2+c^2
Cho a; b; c là các số thỏa mãn: ab + bc + ca = 1
Tính giá trị biểu thức: T = \(\dfrac{\left(a+b+c-abc\right)^2}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
Cho a,b,c là Ba số khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) ( với giả thiết cá tỷ số đều có nghĩa)
Tính giá trị biểu thức M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho các số dương a,b,c thỏa mãn ab+a+b=3; bc+b+c=8; ca+c+a=15. Tính giá trị biểu thức P=a+b+c.
cho a,b,c là các số không dương thỏa mãn a^2+b^2+c^2=(a-b)^2+(b-c)^2+(c-a)^2 và ab+bc+ca=9 tính a+b+c
Cho 3 số dương a,b,c thỏa mãn a+b+c = 1/2 và a^2+b^2+c^2+ab+bc+ca =1/6. tính giá trị BT : P = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Cho a,b,c thỏa mãn \(\frac{a^3}{a^{^2}+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}=1006\).Tính giá trị của biểu thức \(M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Cho \(S=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\). CMR \(4S+1\)là số chính phương
Bài 1: Cho a,b,c là các số thực dương thỏa nãm a+b+c=1. Tìm GTNN của biểu thức
\(H=\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\)
Bài 2:Cho a,b là các số thực dương thỏa mãn \(a^2-6ab-2b^2=0\)
Tính giá trị của biểu thức \(P=\frac{ab}{a^2+2b^2}\)