Q=(a-b-c)^2+2(ab-bc+ca)
=25+2*25
=75
Q=(a-b-c)^2+2(ab-bc+ca)
=25+2*25
=75
Cho a,b,c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\)
CMR: \(\frac{a^5+b^5}{ab\left(a+b\right)}+\frac{b^5+c^5}{bc\left(b+c\right)}+\frac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)
Cho a,b,c là 3 số khác 0 thỏa mãn
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị biểu thức
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
Cho 3 số dương a,b,c thỏa mãn a+b+c = 1/2 và a^2+b^2+c^2+ab+bc+ca =1/6. tính giá trị BT : P = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Cho a,b,c thỏa mãn \(\frac{a^3}{a^{^2}+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}=1006\).Tính giá trị của biểu thức \(M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Cho \(S=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\). CMR \(4S+1\)là số chính phương
cho 3 số a, b, c thỏa mãn \(ab+bc+ca=0\)
tính \(B=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Cho 3 số a,b,c thỏa mãn abc=1 và a^3=36. cm: a^2/3 b^2 c^2 > ab bc ca
Cho a,b,c là các số dương thỏa mãn: a + b + c = 3. Tìm GTNN của:
\(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3.
\(CMR:\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\le27\)
Cho a,b , c là 3 số dương thỏa mãn a + b + c = 3 . C/m:
\(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{3}{2}\)
Cho 3 số a,b,c thỏa mãn a^2 + b^2 + ab +bc +ca <0.Cmr:a^2+b^2<c^2