Cho ba số a,b,c thỏa mãn :
+) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)
+) \(a+b+c=2022\\ \)
Tính giá trị của biểu thức P = \(\left(a^{2019}+b^{2019}\right)\left(c^{2021}+b^{2021}\right)\left(a^{2023}+c^{2023}\right)\)
Cho ba số a,b,c thỏa mãn a^2+b^2+c^2=27 và a+b+c=9.
Tính giá trị của biểu thức: (a-4)^2021+(b-4)^2022+(c-4)^2023
có lời giải giúp mình với
cho ba số thức a,b,c thỏa mãn 8(a+b+c)^3=(2a+b-c)^3+(2b+c-a)^3+(2c+b-a)^3
tính giá trị biểu thức p=(a+3b)(b+3c)(c+3a)
Cho a,b,c là các số thực khác 0 thỏa mãn. Tính giá trị biểu thức:
\(P=\frac{a^2c}{a^2c+c^2b+b^2a}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
Cho a,b,c là các số đều khác 0 thỏa mãn a+b+c=0. Tính giá trị của biểu thức:
Q=(a-b/c+b-c/a+c-a/b)(c/a-b+a/b-c+b/c-a)
Cho a,b,c là các số đều khác 0 thỏa mãn a+b+c=0. Tính giá trị của biểu thức:
Q=(a-b/c+b-c/a+c-a/b)(c/a-b+a/b-c+b/c-a)
1. Cho các số a, b,c thỏa mãn a(a-b)=0 +b(b-c)+c(c-a)=0
Tính giá trị nhỏ nhất của biểu thức A=a3+b3+c3-3abc+3ab-3c+5
Cho các số a,b,c thỏa mãn : a(a-b) +b(b-c) +c(c-a) =0.
Tìm giá trị nhỏ nhất của biểu thức A= a^3 + b^3 + c^3 -3abc + 3ab -3c+5
Giúp mk nhanh vs!!!
Cho a,b,c là ba số khác nhau từng đôi và thỏa mãn
a^2 + 2b = b^2 + 2c = c^2 + 2a
Tính giá trị của biểu thức P= ( a + b - 1)( b + c -1)( c + a - 1)