Ta thấy trong 3 số thực dương a;b;c luôn tồn tại hai số cùng lớn hơn hay nhỏ hơn hoặc bằng 1.Giả sử 2 số đó là b,c
Khi đó \(\left(b-1\right)\left(c-1\right)\ge0\)
\(\Leftrightarrow bc\ge b+c-1\ge0\)\(\Rightarrow2abc\ge2ab+2ac-2a\)
Do đó \(a^2+b^2+c^2+2abc+1\ge a^2+b^2+c^2+2ab+2ac-2a+1\)
Nên bây giờ ta chứng minh :\(a^2+b^2+c^2+2ab+2ac-2a+1\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-c\right)^2\ge0\)(luôn đúng)
Dấu bằng xảy ra khi a=b=c=1