a) \(A\in\left\{abc,acb,bac,bca,cab,cba\right\}\)
b) 2 số nhỏ nhất trong tập hợp A là abc, acb. Theo đầu bài ta có:
abc + acb = 488
( 100a + 10b + c ) + ( 100a + 10c + b ) = 488
( 100a + 100a ) + ( 10b + b ) + ( c + 10c ) = 488
200a + 11b + 11c = 488
200a + 11 ( b + c ) = 488
--> 488 / 200 = a ( dư 11 ( b + c ) ) <-> 488 / 200 = 2 ( dư 88 )
--> a = 2
11 ( b + c ) = 88
-> b + c = 8
Do a < b < c nên 2 < b < c. Mà b + c = 8 --> b = 3 ; c = 5
Vậy a + b + c = 2 + 3 + 5 = 10