b: \(\overrightarrow{OB}=\overrightarrow{OA}+\overrightarrow{AB}\)
b: \(\overrightarrow{OB}=\overrightarrow{OA}+\overrightarrow{AB}\)
Cho tứ giác ABCD, I và J là trung điểm của AB và CD,O là trung điểm I. M là điểm bất kỳ.Chứng minh: a) vecto OA + vecto OB + vecto OC + vecto OD = vecto O b) vecto MA + vecto MB + vecto MC + vecto MD = 4MO c) vecto AC + vecto BD = vecto 2IJ
to tứ giác ABCD gọi M, N lần lượt là trung điểm của AB , CD . Trên đoạn thẳng MN lấy 2 điểm của O , I sao cho vecto MO = vecto OI = vecto IN . Tính tổng vecto OA + vecto IB + vecto IC + vecto OD
Cho tam giác ABC. Gọi A’,B’, C’ lần lượt là trung điểm của BC, CA, AB. a) Chứng minh vecto AA’+ vecto BB’+ vecto CC’ = vecto 0 b) Đặt vecto BB’ = vecto u, CC’ = v. Tính vecto BC, CA, AB theo vecto u và v
cho hbh ABCD tâm O và điểm M bất kì . CM : vecto MA +vecto MB + vecto MC+ vecto MD= 4 vecto MO
mk cần gấp các b giúp mk vs
cho hình thoi ABCD cạnh bằng a có tâm O, góc BAD =60 ĐỘ. tính độ dài vec tơ sau.
a) VECTO AB + VECTO AD.
b) VECTO AB - VECTO AC.
c)VECTO AB + VECTO AC.
d) VECTO AD + VECTO CB.
e) VECTO OB - VECTO DC
cho tam giác ABC:
a) xác định các điểm D và E sao cho vecto AD= 2 vecto AB, vecto AE = \(\frac{-1}{2}\)vecto AC
b) Dựng các vecto sau : vecto AB + 2 vecto AC, 2 vecto AB - vecto AC
Mọi ng giúp mình câu b với ạ !
Cho tam giác ABC, gọi M,N,P lần lượt là trung điểm của BC, AC, AB. D là trung điểm của AM. Chứng minh rằng:
a, vecto AB+ vecto AC+ vecto MN+ vecto MP = vecto 0
b, vecto NB+ vecto NC - 2.vecto AN= 4.vecto ND
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC .
a)CM: vecto IJ=2/5 vecto AC - 2 vecto AB
b) tính vecto IG theo vecto AB và vecto AC
Cho ABCD là hình thang vuông tại A,B (AD là đáy lớn). AD = 2BC và AB = BC = a
a. Tính vecto CD - vecto CB
b. Gọi I trung điểm AD. CM: vecto BI + vecto BC - vecto BA = vecto AD