Cho các số thực x,y thỏa mãn \(x^2+y^2=1\) . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = \(\sqrt{3}xy+y^2\)
Cho x,y,z là các số thực không âm thỏa mãn \(x\le1,y\le1,z\le1\) và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=\frac{3}{2}\) . Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = x + y + z ?
cho ba số thực không âm x,y,z thỏa mãn xyz=1 . tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M=\(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\)
Bài 1:
Cho số thực x. Với \(x\ge1\).Tìm giá trị nhỏ nhất của biểu thức
\(A=\sqrt{x-2\sqrt{x-1}}+5.\sqrt{x+3-4.\sqrt{x-1}}+\sqrt{x+8-6.\sqrt{x-1}}\)
Bài 2:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
\(y=\frac{x^2}{x^2-5x+7}\)
Bài 3:
Cho hai số dương x,y thay đổi nhưng luôn thỏa mãn điều kiện \(\frac{2}{x}+\frac{3}{y}=6\)
Tìm giá trị nhỏ nhất của x+y
Cho x,y là các số thực dương thỏa mãn
\(\sqrt{x}+\sqrt{y}=1\)
Tìm giá trị nhỏ nhất và giá trị lớn nhất của
\(x\sqrt{x}+y\sqrt{y}\)
Cho x,y là các số thực dương thỏa mãn x+y+xy=3 tìm các giá trị lớn nhất của biểu thức
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của
\(P=x\sqrt{1+y}+y\sqrt{1+x}\) trong đó x,y là hai số thực không âm thỏa mãn x+y=1
Cho x; y thỏa mãn \(2\sqrt{x}+3\sqrt{y}=7\)Tìm giá trị lớn nhất và nhỏ nhất của P= x+10y
cho hai số thực dương x,y thỏa mãn \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2015\)tìm giá trị nhỏ nhất của x+y