Cho 2 số thực a,b thay dổi thỏa mãn điều kiện a+b>= 1 và a>o
Tìm GTNN A=\(\frac{8a^2+b}{4a}\) + b2
Cho hai số a. b thỏa mãn điều kiện \(a+b\ge1\) và 1>a>0
Tìm GTNN của biểu thức \(\frac{8a^2+b}{4a}+b^2\)
Cho hai số thực a,b thay đổi, thỏa mãn điều kiện a + b ≥ 1 và a > 0. Tìm giá trị nhỏ nhất của: Q = 2a + b2 + \(\frac{b}{4a}\)
Cho hai số thực a,b thay đổi, thỏa mãn điều kiện a + b ≥ 1 và a > 0. Tìm giá trị nhỏ nhất của: Q = 2a + b2 + \(\frac{b}{4a}\)
Cho a, b là các số thực dương thỏa mãn a + b = 4ab
Tìm GTNN của biểu thức \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}\)
Cho các số thực không âm a, b, c thay đổi thỏa mãn \(a^2+b^2+c^2=1\). Tìm GTLN và GTNN của biểu thức \(Q=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
cho 2 số thực dương a, b thay đổi thỏa mãn: \(a+b\ge4\). Tìm GTNN của biểu thức:
\(P=\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{9+a^2b^2}\)
Cho a, b là 2 số thực không âm thỏa mãn a+b =2, tìm GTNN của P=\(\sqrt{4a+1}+\sqrt{5b+1}\)
giúp em với ạ