Hình như đây là đề thi vào 10 chuyên năng khiếu thành phố hồ chí minh năm 2013-2014 thì phải
Hình như đây là đề thi vào 10 chuyên năng khiếu thành phố hồ chí minh năm 2013-2014 thì phải
Cho x,y,z là ba số thực dương thỏa mãn 4x^2 +3(y^2 +z^2)+6xyz=4
Chứng minh rằng 2x+can3 (y+z)<=3
Cho các số dương x,y,z thỏa mãn x + y + z = 1. Chứng minh rằng
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\)\(\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)
Cho các số dương x,y,z thỏa mãn x + y + z = 1. Chứng minh rằng:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\)\(\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)
Cho x,y là các số thực dương thỏa mãn x+y+xy=3 tìm các giá trị lớn nhất của biểu thức
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\)
cho các số thực dương x,y,z thoả mãn \(\sqrt{x}\) + \(\sqrt{y}\) + \(\sqrt{z}\) = 1
chứng minh rằng : \(\sqrt{\dfrac{xy}{x+y+2z}}\) + \(\sqrt{\dfrac{yz}{y+z+2x}}\) + \(\sqrt{\dfrac{zx}{z+x+2y}}\) ≤ \(\dfrac{1}{2}\)
cho các số thực dương x,y,z thỏa mãn x2+y3+z4>x3+y4+z^5. chứng minh rằng x+y+z<3
cho 2 số dương x,y thỏa mãn x+y=1
chứng minh rằng \(P=6\left(x^3+y^3\right)+8\left(x^4+y^4\right)+\frac{5}{xy}\ge\frac{45}{2}.\)
Cho A=\(\sqrt{x^4+4x^3+6x^2+4x+2}\) +\(\sqrt{y^4-8x^3+24y^2-32y+17}\)với x, y là số thực thỏa mãn (2+x)(y-1)=9/4
Tính giá trị của A
cho các số x,y,z là số dương thỏa mãn x+y+z=4 . Chứng minh x+y >=xyz