Đặt \(T=a^2+4b^2\)(1)
Vì a+4b=1 => a=1-4b
Thế vào (1) ta được: \(T=\left(1-4b\right)^2+4b^2=20b^2-8b+1\)
<=> \(T=20\left(b^2-2\cdot\frac{1}{5}\cdot b+\frac{1}{25}\right)+\frac{1}{5}=20\left(b-\frac{1}{5}\right)^2+\frac{1}{5}\)
=> \(T\ge\frac{1}{5}\left(đpcm\right)\)
trả lời
anh ơi cái anyf dùng bất đẳng thức
(ax+by)^2<= (a^2+b^2)(x^2+y^2) cũng được nhỉ
cách này nhanh hơn đó ạ
hok tốt