Ta có a + b = 1 nên \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)
Lại có \(a^2+b^2=a^2+\left(1-a\right)^2=2a^2-2a+1\)
\(2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Vậy nên \(a^3+b^3+ab\ge\frac{1}{2}\)
Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Leftrightarrow\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)
\(\Leftrightarrow a^3+b^3+ab\ge\frac{1}{2}\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)