Đường tròn (C) tâm \(A\left(0;0\right)\) bán kính \(R=1\)
Đường tròn \(\left(C'\right)\) tâm \(B\left(m+1;-2m\right)\) bán kính \(r=\sqrt{5m^2+2m+6}\)
TH1: 2 đường tròn tiếp xúc ngoài
\(\Leftrightarrow AB=R+r'\)
\(\Rightarrow\sqrt{5m^2+2m+1}=1+\sqrt{5m^2+2m+6}\)
Đặt \(\sqrt{5m^2+2m+1}=t>0\)
\(\Rightarrow t=1+\sqrt{t^2+5}\)
\(\Leftrightarrow\sqrt{t^2+5}=t-1\left(t\ge1\right)\)
\(\Leftrightarrow t^2+5=t^2-2t+1\)
\(\Rightarrow t=-2\left(l\right)\)
TH2: 2 đường tròn tiếp xúc trong
\(\Rightarrow AB=r-R\)
\(\Leftrightarrow\sqrt{5m^2+2m+1}=\sqrt{5m^2+2m+6}-1\)
Đặt \(\sqrt{5m^2+2m+1}=t>0\)
\(\Rightarrow t=\sqrt{t^2+5}-1\)
\(\Leftrightarrow t+1=\sqrt{t^2+5}\)
\(\Leftrightarrow t^2+2t+1=t^2+5\Rightarrow t=2\)
\(\Rightarrow\sqrt{5m^2+2m+1}=2\)
\(\Leftrightarrow5m^2+2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=\frac{3}{5}\end{matrix}\right.\)