Cho 3 số dương \(0\le a\le b\le c\le1\)
Chứng minh:
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
Bài 1: a) Cho a+b+c=6 và ab+bc+ac=9. Chứng minh rằng 0<a<4; 0<b<4; 0<c<4.
b) Cho a+b+c=2 và a2+b2+c2=2. Chứng minh rằng: \(0\le a\le\frac{4}{3};\)\(0\le b\le\frac{4}{3};\)\(0\le c\le\frac{4}{3}.\)
cho \(a;b;c>0;a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c};a\le b\le c.\)Chứng minh rằng \(ab^2c^3\le1\)
Cho a+b+c=2 và 2 +b2+c2=2. Chứng minh: \(0\le a\le\frac{4}{3};0\le b\le\frac{4}{3};0\le c\le\frac{4}{3}\)
Cho \(0< a\le b\le c\). Chứng minh:
\(\frac{2a^2}{b+c}+\frac{2b^2}{c+a}+\frac{2c^2}{a+b}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
cho ba số dương \(0\le a\le b\le c\le1\) CMR \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\)
Cho \(0\le x\le1\)
Chứng minh rằng -x3+x2\(\le\frac{1}{4}\)
Cho a+b+c=2 và a2+b2+c2=2. Chứng minh răng 0\(\le\)a\(\le\)\(\frac{4}{3}\);0\(\le\)b\(\le\)\(\frac{4}{3}\);0\(\le\)c\(\le\)\(\frac{4}{3}\)
Cho a, b > 0 thỏa mãn: \(2a+3b\le1\)
Chứng minh : \(36a^2b^2\left(4a^2+9b^2\right)\le\frac{1}{32}\)
Và dấu "=" xảy ra ?