(x+y+3)^2 +y^2-17=0
(x+y+3)^2=17-y^2
\(\orbr{\begin{cases}x+y+3=\sqrt{17-y^2}\\x+y+3=-\sqrt{17-y^2}\end{cases}}\\ \)
\(0\le\sqrt{17-y^2}< =17\Rightarrow-17\le-\sqrt{17-y^2}\le0\Rightarrow x+y+3\ge-17\)
ddawngr thuwcs khi y=0
=> B=(x+y+3)+2013\(\ge2013-17=1996\)