c: \(13^{14}-13^{13}=13^{13}\left(13-1\right)=13^{13}\cdot12\)
\(13^{15}-13^{14}=13^{14}\left(13-1\right)=13^{14}\cdot12\)
Do đó: \(13^{14}-13^{13}< 13^{15}-13^{14}\)
d: \(3^{n+2}=3^n\cdot9\)
\(2^{n+3}=2^n\cdot8\)
mà \(3^n>2^n;9>8\)
nên \(3^{n+2}>2^{n+3}\)
