Câu 6:
a: Xét ΔACD và ΔECD có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔACD=ΔECD
b: Ta có: ΔACD=ΔECD
nên DA=DE
mà DE<DB
nên DA<DB
Câu 6:
a: Xét ΔACD và ΔECD có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔACD=ΔECD
b: Ta có: ΔACD=ΔECD
nên DA=DE
mà DE<DB
nên DA<DB
Câu 6 (2,5đ): Cho tam giác ABC có AC < BC, CD là tia phân giác của góc C (D thuộc AB). Trên cạnh BC lấy điểm E sao cho CA = CE.
a) Chứng minh: tam giác ACD = tam giác ECD
b) So sánh DA và DB
mọi người vẽ hình và ghi giả thiết kết luận giúp mình với nhé! Cảm ơn
Bài 1: Cho DABC có AB = AC. Gọi D là trung điểm của BC. Chứng minh rằng:
a) DABD = DACD. b) AD là tia phân giác của góc BAC. c) AD ^ BC.
Bài 2: Cho DABC vuông tại A, trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.
a) So sánh độ dài DA và DE. b) Tính góc BED. c) CMR: BD ^ AE.
Bài 3: Cho góc xOy có số đo khác 1800. Lấy điểm A, B thuộc tia Ox sao cho OA < OB, lấy điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:
a) AD = BC; b) DEAB = DECD; c) Tia OE là tia phân giác của góc xOy
Bài 4: Cho tam giác ABC (AB<AC) vuông tại A, Gọi M là trung điểm của BC, trên tia AM lấy điểm N sao cho MN = MA.
a) Chứng minh AMB = NMC.
b) Chứng minh ACCN.
c) Chứng minh AM=
Bài 5: Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của AB và CD.
a) CMR: DAOC = DBOD; AC // BD.
b) Gọi M, N lần lượt là trung điểm của AC và BD. CMR: O là trung điểm của MN.
Bài 6: Cho , O là trung điểm của BC. Lấy điểm D thuộc tia đối của tia OA sao cho OD = OA.
a) Chứng minh rằng: .
b) Chứng minh AC = BD và AC // BD.
c) Trên đoạn thẳng AO lấy điểm I, trên đoạn thẳng OD lấy điểm H sao cho CI // BH. Chứng minh rằng: và AI = HD.
d) Kẻ . Chứng minh 3 điểm E, O, F thẳng hàng.
Bài 7: Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC tại E, trên cạnh BC lấy điểm D sao cho BA = BD.
a) Chứng minh: .
b) Chứng minh: ED BC.
c) Trên tia đối của tia AB lấy điểm F sao cho BF = BC. Chứng minh EF = EC.
d) Chứng minh ba điểm D, E, F thẳng hàng.
GIÚP MÌNH VỚI
Cho DABC vuông tại A có AB = 9cm và AC = 12cm. Vẽ trung tuyến AM của DABC và MH vuông góc AC (H Î AC). Trên tia đối của tia MH lấy điểm K sao cho MK = MH.
a/ Tính BC. So sánh các góc của DABC.
b/ Chứng minh DMHC = DMKB và BK song song với AC.
c/ Gọi G là giao điểm của BH và AM.
Chứng minh GA + GB + GC > 18
Cho tam giác ABC vuông tại A, tia phân giác BD của góc B cắt AC tại D. Trên BC lấy điểm E sao cho AB = BE.
a) Chứng minh BC – BA > CD – DA
b) Kẻ AH vuông góc với BC (H thuộc BC). So sánh EH và EC
cho dabc vuông tại a có ab < ac . trên tia đối của tia ab lấy điểm d sao cho ad = ab a, so sánh góc B và C b , chứng minh rằng tam giác CBD là tam giác cân c , gọi M là trung điểm của CD , đường thẳng qua D và song song với BC cắt đường thẳng BM tại E . Chứng minh rằng BC = DE và BC + BD > BE
Cho tam giác ABC vuông tại A có AB = 6cm và BC = 10cm, tia phân giác của góc B cắt AC tại D . Kẻ AH vuông góc với BD Tại H, AH kéo dài cắt BC tại E
. a/ tính AC?
. b/ Chứng Minh tam giác ABE là tam giác cân
. c/ chứng minh tam gaics BED là tam giác vuông, so sánh CD và AD ?
. d/ gọi I là trung điểm BE.Chứng Minh AI+BH > 9cm
.( vẽ hình hộ em )
Cho tam giác ABC vuông tại A, kẻ đường cao AH ứng với BC, trên cạnh BC lấy điểm D sao cho AB = BD, đường vuông góc với BC tại D cắt AC ở E:
a. So sánh AE với DE
b. Chứng minh AD là tia phân giác góc HAC
c. Tia phân giác góc ngoài đỉnh C cắt BE ở K. Tính số đo góc BAK?
d. Chứng minh: AB + AC < AH + BC
e. So sánh HD với DC
1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm
a) Chứng tỏ tam giác ABC vuông tại A.
b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.
2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.
3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.
4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB = tam giác AHC
b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.
5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I
a) Chứng minh tam giác AIB = tam giác AIC
b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.
c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.
6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.
a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.
b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.
c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.
Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(
Bài 1;cho tam giác ABC vuông tại A( AB>AC), kẻ phân giác BF. Gọi H là hình chiếu của điểm C trên BF, trên tia đối tia HB lấy điểm E sao cho HE=HF. gọi K là hình chiếu của F trên BC. CMR
a, so sánh FA và FC
b,chứng minh tam giác EBC vuông
c, cmr: CH,FK,AB đồng quy tại 1 điểm
Bài 2:
cho tam giác ABC vuông tại A, đường cao AH. Trên cạnh BC lấy điểm D sao cho BD=AB, đuơng vuông góc với BC tại D cắt AC tại E
a, so sánh AE và DE
b,chưng minh AD la phân giác góc HAC
c,đường phân giác góc ngoài tại đỉnh C cắt đường thẳng BE tại K. Tính BKA và BKC
d, So sánh HD và DC
e,chứng minh AB+AC<BC+AH