a: Xet ΔABP vuông tại P và ΔACP vuông tại P có
AB=AC
AP chung
=>ΔABP=ΔACP
b: Xét tứ giác ABNC có
P là trung điểm chung của AN và BC
=>ABNC là hình bình hành
=>AB//NC
a: Xet ΔABP vuông tại P và ΔACP vuông tại P có
AB=AC
AP chung
=>ΔABP=ΔACP
b: Xét tứ giác ABNC có
P là trung điểm chung của AN và BC
=>ABNC là hình bình hành
=>AB//NC
Cho tam giác ABC, trên tia đối của tia BC lấy điểm M sao cho MB = AB, trên tia đối của tia CB lấy điểm N sao cho NC = AC. Qua M kẻ đường thẳng song song với AB. Qua N kẻ đường thẳng song song với AC. Hai đường thẳng đó cắt nhau tại P. Chứng minh:
a) MA, NA lần lượt là tia phân giác của P M B ^ , P N C ^
b) Tia PA cắt BC tại K. Chứng minh PA là tia phân giác của M P N ^ , từ đó suy ra AK là tia phân giác của B A C ^
Bài 4. Cho tam giác ABC vuông tại A. P là điểm nằm ngoài tam giác sao cho PB vuông góc với BC và PB = BC. Gọi D là điểm trên tia PA sao cho CD vuông góc PA. E là điểm trên tia CD sao cho BE vuông góc AB. Chứng minh rằng AE là phân giác góc BAC.
Cho tam giác ABC cân tại A có BC < AB, gọi M là trung điểm của BC.
a) Chứng minh ABM = ACM từ đó suy ra AM là tia phân giác của góc BAC.
b) Trên cạnh AB lấy điểm D sao cho CB = CD. Kẻ tia phân giác của góc BCD, tia này cắt
cạnh BD tại N. Chứng minh CN BD
c) Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh BCEADC
d) Chứng minh: BA = BE.
Cho tam giác ABC. Trên tia đối của tia BC lấy M sao cho BM = BA. Trên tia đối tia CB lấy N sao cho CN = CA. Qua M kẻ đường thẳng song song với AB, qua N kẻ đường thẳng song song với AC, chúng cắt nhau tại P.
a) Chứng minh MA là tia phân giác của P M B ^ , NA là tia phân giác của P N C ^ .
b) Chứng minh PA là tia phân giác của M N P ^ .
c) Gọi D là trung điểm AM, E là trung điểm AN, các đường thẳng BD, CE cắt nhau tại Q. Chứng minh QM = QN.
d) Chứng minh ba điểm P, A, Q thẳng hàng.
Bài 10. Cho triangle ABC nhọn có AB = AC Gọi M là trung điểm của AB. a) Chứng minh tam giác AMB = tam giác AMC từ đó suy ra AM vuông góc BC b) Gọi I là trung điểm của AC. Trên tia đối của tia IB, lấy điểm N sao cho IN = IB. Chứng minh tam giâc IBC = tam giác INA và AN //BC. c) Gọi H là trung điểm của AN. Chứng minh H, I, M thẳng hàng.
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân
Cho ΔABC vuông tại A (AB < AC). Trên tia đối của tia AB, lấy điểm D sao cho AB = AD.
a) Chứng minh ΔACB = ΔACD, từ đó suy ra ΔBCD cân
b) Gọi E, F lần lượt là trung điểm của CD và BC, BE cắt CA tại I. Chứng minh D, I, F thẳng hàng
c) Kẻ đường thẳng qua D, song song BC và cắt BE tại M. Gọi G là giao điểm của MA và CD. Chứng minh BC = 6GE
Cho tam giác ABC cân có AB=AC=10cm, BC=12 cm. Kẻ Ah vuông góc với AC tại H .
a) Chứng minh rằng H là trung điểm của BC
b)Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN. Chứng minh tam giác AMN cân
c) Từ B kẻ BE vuông góc với AM tại E, từ C kẻ CF vuông góc với AN tại F. Chứng minh góc MBE=góc NCF
d) Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thẳng hang
Cho tam giác ABC vuông tại A có AB < AC, gọi M là trung điểm của BC,trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a)Chứng minh :tam giác ABM = tam giác DCM. Từ đó suy ra AB // CD.
b)Trên tia đối của tia CD lấy điểm E sao cho CA = CE, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE.
c)Kẻ AH vuông góc BC (H thuộc BC). Qua E kẻ Đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh : AF = BC.