Câu 3: (3,0 điểm) Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh: tam giác ABD= tam giác EBD từ đó suy ra AB = EB.
b) Cho AB = 12cm, AC = 15cm. Tính độ dài cạnh BC.
c) Cho góc B = 600. Tính góc ADE .
d) Chứng minh: DA < DC.
Cho tam giác ABC vuông tại A có góc AC = 12cm và cạnh AB = 16cm , tia phân giác của góc B cắt AC tại D KẺ DE vuông góc với BC tại R a) tính độ dài cạnh BC b) chứng minh ABD=EBD từ đó suy ra DA=DE c) Gọi K là giao điểm của BA và ED chứng minh tam giác BCK cân
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DE vuông góc với BC tại E.
a) Chứng minh tam giác ABD bằng tam giác EBD .
b) Gọi F là giao điểm của AB và DE. Chứng minh BF = BC.
c) Kẻ đường cao AH của AFC . Chứng minh AE vuông góc với AH
Cho tam giác ABC vuông tại A, có góc B = 60o và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a/ Chứng minh: Δ ABD = Δ EBD.
b/ Chứng minh: ABE là tam giác đều.
c/ Tính độ dài cạnh BC.
Cho ∆ABC cân tại A. Trên tia đối của các tia BC và CB lấy theo thứ tự 2 điểm D và E sao cho BD = CE.
a. Chứng minh: ∆ADE cân.
b. Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE.
c. Từ B và C kẻ BH và CK theo thứ tự vuông góc với AD và AE. Chứng minh: BH = CK.
Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.
a) Tính độ dìa AC khi AB= 9cm, BC= 15cm
b) Chứng minh: Tam giác ABD=tam giác EBD
c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân
d) Chứng minh: AD<DC
Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D
a) Tính độ dài BC?
b) Chứng minh rằng: Tam giác ABF=tam giác CDF
c) Chứng minh: BF<(AB+BC):2
Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH
a) Tính độ dài BC khi AB= 9cm, AC= 12cm
b) Chứng minh: Tam giác ABD=tam giác HBD
c) Chứng minh: Tam giác KDC cân
d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH
a) Tính độ dài BC khi AB= 3cm, AC= 4cm
b) Chứng minh: Tam giác ABD=tam giác HBD
c) Chứng minh \(Dh\perp BC\)
d) So sánh DH với DK
Cho tam giác ABC vuông tại A . Tia phân giác của góc B cắt tại AC tại D. Từ D kẻ DH vuông góc với BC tại H.
a) Cho BC = 15cm , AB = 9cm . Tính AC.
b) Chứng minh tam giác ABD = tam giác HBD.
c) Tam giác ABH là tam giác gì?Vì sao?
d) Chứng minh : DC >DA.
Cho tam giác ABC vuông tại A với AB/AC=3/4 và BC=15cm. Tia phân giác góc C cắt AB tại D. Kẻ DE vuông góc BC(E thuộc BC).
a. Chứng minh AC=CE
b. Tính độ dài AB; AC
c. Trên tia AB lấy điểm F sao cho AF=AC. Kẻ tia Fx vuông góc FA cắt DE tại M. Tính góc DCM.
Bài 1: Cho tam giác ABC vuông tại A, có B = 600 và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
1/ Chứng minh: △ABD = △EBD.
2/ Chứng minh: △ABE là tam giác đều.
3/ Tính độ dài cạnh BC.
bài 4: cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc C cắt AC tại D .Kẻ DE vuông góc với BC tại E . gọi M là giao điểm củaAB và DE
a, chứng minh tam giác ABD = tam giác EBD, từ đó suy ra BA=BE
b, so sánh độ dài của các cạnh của tam giác ADM