\(A=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\dfrac{2^{12}\cdot3^4\left(3-1\right)}{2^{12}\cdot3^5\left(3+1\right)}=\dfrac{1}{3}\cdot\dfrac{1}{2}=\dfrac{1}{6}\)
\(B=\dfrac{5\cdot2^{30}\cdot3^{18}-3^{20}\cdot2^{29}}{5\cdot2^{22}\cdot3^{12}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{3^{18}\cdot2^{29}\left(5\cdot2-9\right)}{2^{22}\cdot3^{12}\left(5-7\cdot2^7\cdot3^6\right)}=\dfrac{3^6\cdot2^7}{5-7\cdot128\cdot3^6}\)