Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{5}{7}\)
=>\(\dfrac{BD}{5}=\dfrac{DC}{7}\)
mà BD+DC=BC=6
nên \(\dfrac{BD}{5}=\dfrac{CD}{7}=\dfrac{BD+CD}{5+7}=\dfrac{6}{12}=\dfrac{1}{2}\)
=>BD=2,5; CD=3,5
=>\(\dfrac{BD}{BC}=\dfrac{5}{12};\dfrac{CD}{CB}=\dfrac{7}{12}\)
\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}\)
\(=\overrightarrow{AB}+\dfrac{5}{12}\cdot\overrightarrow{BC}\)
\(=\overrightarrow{AB}+\dfrac{5}{12}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)
\(=\dfrac{7}{12}\cdot\overrightarrow{AB}+\dfrac{5}{12}\cdot\overrightarrow{AC}\)
=>Chọn C
Đúng 1
Bình luận (0)