Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hợp trúc

câu 2 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a AD = 2a cạnh SA vuông góc với đáy cạnh SB t

 

diggory ( kẻ lạc lõng )
11 tháng 5 2022 lúc 14:52

Mặt phẳng (BCM) // AD nên nó cắt mặt phẳng (SAD) theo giao tuyến MN//AD

Ta có: BC ⊥ AB và BC ⊥ SA => BC ⊥ BM

Tứ giác BCNM là hình thang vuông BM là đường cao.

có : BC \(\perp\) AB và BC \(\perp\) SA  \(\Rightarrow\) BC \(\perp\) BM

Tứ giác BCNM là hình thang vuông BM là đường cao

ta có : SA = AB . tan 60 = \(a\sqrt{3}\)

\(\dfrac{MN}{AD}=\dfrac{SM}{SA}\)

\(\dfrac{MN}{2a}=\dfrac{a\sqrt{3}-\dfrac{a\sqrt{3}}{3}}{a\sqrt{3}}=\dfrac{2}{3}\)

\(\Rightarrow MN=\dfrac{4a}{3}\)

\(BM=\sqrt{a^2+\dfrac{a^2}{3}}\) \(=\dfrac{2a}{\sqrt{3}}\)

diện tích hình thang BCNM là : \(S=\dfrac{2a+\dfrac{4a}{3}}{2}.\dfrac{2a}{\sqrt{3}}=\dfrac{10a^2}{3\sqrt{3}}\)

\(V_{SBCNM}=\dfrac{1}{3}.SH.S_{BCNM}\)

Hạ SH ⊥ BM

ta có : SH \(\perp\) BM

và BC \(\perp\) (SAB) \(\equiv\) (SBM) \(\Rightarrow\) BC \(\perp\) SH . vậy SH \(\perp\) (BMNC)

\(\Rightarrow\) SH là đường cao của khối chóp S.BCNM 

trong \(\Delta SBA\) có \(SB=\dfrac{AB}{cos60}=2a\)

\(\Rightarrow\) \(\dfrac{AB}{SB}=\dfrac{AM}{MS}=\dfrac{1}{2}\)

BM là phân giác của góc : \(\left\{{}\begin{matrix}SBH=gt\\SBH=30^o=gt\\SH=SB.sin30^o=2a.\dfrac{1}{2}=a\end{matrix}\right.\)

\(\Leftrightarrow\) thể tích khói chóp S.BCNM là :

\(V=\dfrac{1}{3}.a.\dfrac{10a^2}{3\sqrt{3}}=\dfrac{10\sqrt{3a^2}}{27}\)

 

diggory ( kẻ lạc lõng )
11 tháng 5 2022 lúc 14:26

undefined


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Yeon Park
Xem chi tiết
hợp trúc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết