Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyên Anh Thêu

Câu 1: Vẽ phân giác AD của tam giác ABC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE=AB.

  a, Chứng minh: BD = DE

  b, Gọi K là giao điểm của các đường thẳng AB và ED. Chứng minh: tam giác DBK = tam giác DEC và tam giác ADC = tam giác ADK

   c, Chứng minh AD là đường trung trực của BE

giúp tui với mọi người ơi

肖战Daytoy_1005
15 tháng 4 2021 lúc 20:45

Lười đánh máy thật sự:vvv

a) Xét ∆ABD và ∆AED:

AD: cạnh chung

AB=AE(gt)

\(\widehat{BAD}=\widehat{CAD}\) (AD là phân giác góc BAC)

=> ∆ABD=∆AED (c.g.c)

=> BD=DC

b) Theo câu a: ∆ABD=∆AED

=> \(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\left\{{}\begin{matrix}\widehat{ABD}+\widehat{DBK}=180^o\\\widehat{AED}+\widehat{DEC}=180^o\end{matrix}\right.\)

\(\Rightarrow\widehat{DBK}=\widehat{DEC}\)

Xét ∆DBK và ∆DEC:

BD=ED(cm ở a)

\(\widehat{DBK}=\widehat{DEC}\left(cmt\right)\)

\(\widehat{BDK}=\widehat{EDC}\) ( 2 góc đối đỉnh)

=> ∆DBK=∆DEC (g.c.g)

c) Gọi giao điểm của AD và BE là I

Xét ∆BAI và ∆EAI:

AB=AE(gt)

\(\widehat{BAI}=\widehat{EAI}\left(gt\right)\)

AI: cạnh chung

=> ∆BAI=∆EAI (c.g.c)

=> \(\left\{{}\begin{matrix}BI=EI\left(1\right)\\\widehat{AIB}=\widehat{AIE}\end{matrix}\right.\)

Mà \(\widehat{AIB}+\widehat{AIE}=180^o\) (2 góc kề bù)

=> \(\widehat{AIB}=\widehat{AIE}=90^o\left(2\right)\)

Từ (1) và (2) suy ra AD là trung trực của BE.

Nguyễn Lê Phước Thịnh
15 tháng 4 2021 lúc 21:15

a) Xét ΔABD và ΔAED có 

AB=AE(gt)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))

AE chung

Do đó: ΔABD=ΔAED(c-g-c)

Suy ra: BD=ED(hai cạnh tương ứng)


Các câu hỏi tương tự
lyleanhhong
Xem chi tiết
TRẦN BÁ LỘC
Xem chi tiết
Rein
Xem chi tiết
mai nguyễn tuyết
Xem chi tiết
mai nguyễn tuyết
Xem chi tiết
Nguyễn Khánh Phương
Xem chi tiết
NgọcMinh
Xem chi tiết
Phương Uyên Võ Ngọc
Xem chi tiết
Phạm Minh Tuấn
Xem chi tiết