Lời giải:
$\overrightarrow{i}=(1,0), \overrightarrow{j}=(0,1)$
$\Rightarrow \overrightarrow{i}-\overrightarrow{j}=(1-0,0-1)=(1,-1)$
Bài 2:
$\overrightarrow{a}+2\overrightarrow{b}=(3+2.-1, -4+2.2)=(1, 0)$
Lời giải:
$\overrightarrow{i}=(1,0), \overrightarrow{j}=(0,1)$
$\Rightarrow \overrightarrow{i}-\overrightarrow{j}=(1-0,0-1)=(1,-1)$
Bài 2:
$\overrightarrow{a}+2\overrightarrow{b}=(3+2.-1, -4+2.2)=(1, 0)$
Cho hình vuông ABCD có cạnh a = 4. Chọn hệ trục tọa độ \left(A;\overrightarrow{i};\overrightarrow{j}\right), trong đó \overrightarrow{i} và \overrightarrow{AD} cùng hướng, \overrightarrow{j} và \overrightarrow{AB} cùng hướng. Tìm tọa độ các đỉnh của hình vuông, giao điểm I của hai đường chéo, trung điểm N của BC và M của CD.
Trả lời:
A(0;
), B(
;4), C(4;
), D(4;
).
I(
;
), N(
;4), M(4;
)
cho \(\overrightarrow{a}\) =(2;4) \(\overrightarrow{b}\) ( -3;1) và \(\overrightarrow{c}\)( 5; -2) tọa độ vecto \(\overrightarrow{u}\) = 2\(\overrightarrow{a}\) + 3\(\overrightarrow{b}\) - 5\(\overrightarrow{c}\) là
1. Trong hệ trục tọa độ Oxy có A(2;3) B(1;4), C(-1;-5)
tìm tọa độ điểm I trên AB sao cho \(\left|\overrightarrow{IA}+3\overrightarrow{IB}+5\overrightarrow{IC}\right|\) có giá trị nhỏ nhất
Trong mặt phẳng tọa độ Oxy , cho A(1 ; 3), B(5 ; 1). Tìm tọa độ điểm I thỏa mãn: \(\overrightarrow{IO}+\)\(\overrightarrow{IA}\)-\(\overrightarrow{3IB}\) = \(\overrightarrow{0}\)
A. I( 8; 0) B. I( 14; 0) C. I( 6; 14) D. I( 14; 4)
Cho $\triangle A B C$ với $I, J, K$ lần lượt được xác định bời $\overrightarrow{I B}=2 \overrightarrow{I C} ; \overrightarrow{J C}=-\dfrac{1}{2} \overrightarrow{J A} ; \overrightarrow{K A}=-\overrightarrow{K B}$.
a) Tính $\overrightarrow{I J} ; \overrightarrow{I K}$ theo $\overrightarrow{A B} ; \overrightarrow{A C}$.
b) Chứng minh ba điểm $I, J, K$ thẳng hàng.
Cho tam giác $A B C$. Hai điểm $I, J$ được xác định bởi $\overrightarrow{I A}+3 \overrightarrow{I C}=\overrightarrow{0} ; \overrightarrow{J A}+2 \overrightarrow{J B}+3 \overrightarrow{J C}=\overrightarrow{0}$. Chứng minh ba điểm $I, J, B$ thẳng hàng.
cho các vecto \(\overrightarrow{a};\overrightarrow{b}\)có độ dài bằng 1 và 2 góc giữa 2 vecto bằng 120 độ. Ta lập vecto \(\overrightarrow{c}=3\overrightarrow{a}+4\overrightarrow{b}\). Tính độ dài của vecto \(\overrightarrow{c}\)
a) Cho A(1;-2), B(-3;4) và điểm M thỏa mãn \(\overrightarrow{AM}=\overrightarrow{OA}-2\overrightarrow{MB}\). Tìm tọa độ điểm M?
b) Cho A(1;-2), B(-5;0) và điểm M thỏa mãn \(\overrightarrow{MA}=3\overrightarrow{OA}-2\overrightarrow{MB}\). Tìm tọa độ điểm M?
Cho tam giác ABC có A(2;3), B(-1; -1), C(6;0)
a) Tìm tọa độ điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất
b) Tìm tọa độ điểm M∈Ox sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất
c) Tìm tọa độ điểm M thuộc Ox sao cho \(\overrightarrow{u}=\overrightarrow{MA}-4\overrightarrow{MB}\) có độ dài nhỏ nhất