Câu 2:
\(1234321=1111^2\)
Do đó: Số này là hợp số
Câu 2:
\(1234321=1111^2\)
Do đó: Số này là hợp số
Cho p và p+4 là các số nguyên tố (p>3). chứng tỏ rằng p+8 là hợp số.
Chứng tỏ rằng các số có dạng abcabc( có gạch ngang trên đầu ) chia hết cho ít nhất 3 số nguyên tố.
Cho p và p+4 là các số nguyên tố (p>3). chứng tỏ rằng p+8 là hợp số.
Chứng tỏ rằng các số có dạng abcabc( có gạch ngang trên đầu ) chia hết cho ít nhất 3 số nguyên tố.
1. Chứng tỏ rằng các tổng sau đây là hợp số :
a) abcabc +7 c) abcabc+39
b) abcabc+33
( Chú ý : abcabc là 1 số )
2.Tìm STN n để 29n là số nguyên tố
cho P là số nguyên tố hay hợp số?
a) Hỏi P2+3002 là số nguyên tố hay hợp số?
b) chứng tỏ chỉ có 1 trong 2 dạng
cho p là số nguyên tố lớn hơn 3
a, chứng tỏ rằng p có dạng 6k+1 hoặc 6k+2
b, biết 8p+1 cũng là số nguyên tố . Hỏi p+100 là số nguyên tố hay hợp số
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha
Cho p là số nguyên tố lớn hơn 3.
a) Chứng tỏ rằng p có dạng 6k +1 hoặc 6k + 5
b) Biết 8p + 1 đều là số nguyên tố ( p > 3 ). Hỏi p + 100 là số nguyên tố hay hợp số
Số 2.10^2010+7 là hợp số hay nguyên tố? Vì Sao
Số 10^2010-1 là hợp số hay nguyên tố? Vì Sao
Tổng các số tự nhiên từ 1 đến 154 có chia hết cho 2 không?cho 5 không
Cho A=11^9+11^8+...+11+1.Chứng minh rằng A chia hết cho 5
B=2+2^2+2^3+...+2^20.Chứng minh rằng B chia hết cho 5