13:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot5\cdot8\cdot\dfrac{\sqrt{3}}{2}=\dfrac{4\sqrt{3}}{2}\cdot5=10\sqrt{3}\)
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(5^2+8^2-BC^2=2\cdot5\cdot8\cdot cos60=40\)
=>BC^2=49
=>BC=7
S=pr
=>r*(5+8+7)/2=10căn 3
=>r=10căn 3/10=căn 3
Xét ΔABC có
BC/sinA=2R
=>2R=7:sin60=7*2/căn 3
=>R=7/căn 3