Từ tam giác cân BHD suy ra HA'=A'D (BA' là đường trung trực của cạnh HD)
Điểm C nằm trên đường trung trực của HD nên CH=CD.
Từ tam giác cân BHD suy ra HA'=A'D (BA' là đường trung trực của cạnh HD)
Điểm C nằm trên đường trung trực của HD nên CH=CD.
Các đường cao hạ từ A và B của tam giác ABC cắt nhau tại H (góc C khác 90o) và cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại D và E. Chứng minh rằng: CD = CE
Các đường cao hạ từ A và B của tam giác ABC cắt nhau tại H (góc C khác 90o) và cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại D và E. Chứng minh rằng: ΔBHD cân
Các đường cao hạ từ A và B của tam giác ABC cắt nhau tại H (góc C khác 90 ° ) và cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại D và E. Chứng minh rằng:
a) CD = CE ; b) ΔBHD cân ; c) CD = CH.
Câu 3: Cho tam giác ABC (góc C khác 90 độ ), nội tiếp đường tròn tâm O các đường cao hạ từ A và B cắt nhau lại H và các cạnh BC và AC lần lượt tại I và K cắt đường tròn tại D và E .CMR a)Chứng minh tứ giác CIHK nội tiếp b) Chứng minh CE = CD C) Chứng minh tam giác BDH cân.
Cho tam giác ngọn ABC hai đường cao hạ từ A và B cắt nhau tại H và cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại D và E chứng minh
a. CD=CE
b. CH vuông góc AB
c. Gọi I là giao điểm của AB và BC, K là giao điểm củaBE và AC. Chứng minh tứ giác AKIB nội tiếp xác định tâm đường tròn ngoại tiếp tứ giác AKIB
Giải giúp tớ với ạ mai mình phải nộp r help
Các đường cao AM, BN của tam giác ABC cắt nhau tại H. Các đường cao ấy kéo dài cắt đường tròn ngoại tiếp tam giác ABC tại D và E.
Chứng minh rằng
a) ABMNlaf tứ giác nội tiếp
b) CD = CE
c) Các đường tròn ngoại tiếp các tam giác ABC và AHC có bán kính bằng nhau
Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Tiếp tuyến tại \(A\) với đường tròn ngoại tiếp tam giác \(ABC\) cắt các tiếp tuyến tại \(B\) và \(C\) lần lượt của \(D\) và \(E\). Gọi \(I\) là giao điểm \(CD\) và \(BE\). Chứng minh rằng:
\(a\)) \(A,I,H\) thẳng hàng.
\(b\)) \(AI=IH\).
\(c\)) \(DE\cdot AI=DB\cdot EC\)
Cho tam giác ABC và một điểm I thuộc miền trong tam giác. Giả sử đường tròn ngoại tiếp tam giác IBC cắt các đoạn thẳng AB và AC lần lượt tại các điểm D và E. Gọi F là giao điểm của hai đường thẳng BE và CD. Đường thẳng ID và đường thẳng IE theo thứ tự cắt đường thẳng AF tại M và N.
1. Chứng minh rằng: đường tròn (C₁) ngoại tiếp tam giác BMN và đường tròn (C₂) ngoại tiếp tam giác CMN có độ dài bằng nhau.
2. Đường tròn (C₁) cắt đường thẳng AB và đường thẳng BE lần lượt tại P và T (P và T khác B). Đường tròn (C₂) cắt đường thẳng AC và đường thẳng CD lần lượt tại S và Q (S và Q khác C). Chứng minh rằng: ba đoạn thẳng MN, PQ và ST đồng qui tại trung điểm của mỗi đoạn.
Cho các đường cao tại A và B của tam giác ABC cắt nhau tại H(góc C khác 90°)và cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại D và E
1.Kẻ đường kính AG.Chứng minh BHCG là hình bình hành
2.Gọi I là giao của HG và BC. Chứng minh AH=2OI(O là tâm đường tròn ngoại tiếp tam giác ABC)
3.Gọi K là giao của AD và BC,M là giao của BE và AC. Chứng minh rằng KM//ED
4'.Cho BC cố định,A di động trên cung BC lớn. Chứng minh H thuộc 1 đường cố định
5.Cho góc BÁC bằng 60°. Chứng minh rằng AH=Ao