c: \(A=\dfrac{2^7\cdot6^5-36^2\cdot4^4}{128\cdot6^5+2^{12}\cdot243}\)
\(=\dfrac{2^7\cdot2^5\cdot3^5-3^4\cdot2^4\cdot2^8}{2^7\cdot2^5\cdot3^5+2^{12}\cdot3^5}\)
\(=\dfrac{2^{12}\cdot3^5-3^4\cdot2^{12}}{2^{12}\cdot3^5+2^{12}\cdot3^5}\)
\(=\dfrac{2^{12}\cdot3^4\left(3-1\right)}{2\cdot2^{12}\cdot3^5}\)
\(=\dfrac{1}{3}\cdot\dfrac{2}{2}=\dfrac{1}{3}\)
d: \(\dfrac{5^7\cdot35^3+25^5\cdot49^2}{\left(125\cdot7\right)^3\cdot2+5^9\cdot14^3}\)
\(=\dfrac{5^7\cdot5^3\cdot7^3+5^{10}\cdot7^4}{5^9\cdot7^3\cdot2+5^9\cdot2^3\cdot7^3}\)
\(=\dfrac{5^{10}\cdot7^3\left(1+7\right)}{5^9\cdot7^3\cdot2\left(2^2+1\right)}\)
\(=\dfrac{5\cdot8}{2\cdot5}=\dfrac{8}{2}=4\)