Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
gojo  satoru

các bạn giúp mình giải bài này nha

Nguyễn Lê Phước Thịnh
20 tháng 11 2023 lúc 17:39

Bài 2:

1: ĐKXĐ: x<>1

\(\dfrac{x}{x-1}+\dfrac{1}{1-x}\)

\(=\dfrac{x}{x-1}-\dfrac{1}{x-1}\)

\(=\dfrac{x-1}{x-1}=1\)

2: ĐKXĐ: x<>3/2

\(\dfrac{11x}{2x-3}-\dfrac{x-18}{3-2x}\)

\(=\dfrac{11x}{2x-3}+\dfrac{x-18}{2x-3}\)

\(=\dfrac{11x+x-18}{2x-3}=\dfrac{12x-18}{2x-3}\)

\(=\dfrac{6\left(2x-3\right)}{2x-3}\)

=6

3: ĐKXĐ: x<>1/2

\(\dfrac{4x+5}{2x-1}+\dfrac{5-9x}{1-2x}\)

\(=\dfrac{4x+5}{2x-1}+\dfrac{9x-5}{2x-1}\)

\(=\dfrac{4x+5+9x-5}{2x-1}=\dfrac{13x}{2x-1}\)

4: ĐKXĐ: x<>2/5

\(\dfrac{2x-7}{10x-4}-\dfrac{3x+5}{4-10x}\)

\(=\dfrac{2x-7}{10x-4}+\dfrac{3x+5}{10x-4}\)

\(=\dfrac{2x-7+3x+5}{10x-4}=\dfrac{5x-2}{10x-4}=\dfrac{1}{2}\)

5: ĐKXĐ: \(x\ne\pm y\)

\(\dfrac{xy}{x^2-y^2}-\dfrac{x^2}{y^2-x^2}\)

\(=\dfrac{xy}{x^2-y^2}+\dfrac{x^2}{x^2-y^2}\)

\(=\dfrac{x\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{x}{x-y}\)

6: ĐKXĐ: \(x\notin\left\{0;7\right\}\)

\(\dfrac{4x+13}{5x\left(x-7\right)}-\dfrac{x-48}{5x\left(7-x\right)}\)

\(=\dfrac{4x+13}{5x\left(x-7\right)}+\dfrac{x-48}{5x\left(x-7\right)}\)

\(=\dfrac{4x+13+x-48}{5x\left(x-7\right)}\)

\(=\dfrac{5x-35}{x\left(5x-35\right)}=\dfrac{1}{x}\)

7: ĐKXĐ: \(x\ne1\)

\(\dfrac{x+2}{x-1}-\dfrac{x-9}{1-x}-\dfrac{x-9}{1-x}\)

\(=\dfrac{x+2}{x-1}+\dfrac{x-9}{x-1}+\dfrac{x-9}{x-1}\)

\(=\dfrac{x+2+x-9+x-9}{x-1}=\dfrac{3x-16}{x-1}\)

8: ĐKXĐ:x<>1

\(\dfrac{2x^2-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)

\(=\dfrac{2x^2-x}{x-1}-\dfrac{x+1}{x-1}+\dfrac{2-x^2}{x-1}\)

\(=\dfrac{2x^2-x-x-1+2-x^2}{x-1}=\dfrac{x^2-2x+1}{x-1}\)

=x-1

9: ĐKXĐ: x<>3

\(\dfrac{4-x^2}{x-3}+\dfrac{2x-x^2}{3-x}+\dfrac{5-4x}{x-3}\)

\(=\dfrac{4-x^2}{x-3}+\dfrac{x^2-2x}{x-3}+\dfrac{5-4x}{x-3}\)

\(=\dfrac{4-x^2+x^2-2x+5-4x}{x-3}=\dfrac{-6x+9}{x-3}\)

10: ĐKXĐ: x<>5

\(\dfrac{x+1}{x-5}+\dfrac{x-18}{5-x}+\dfrac{x+2}{x-5}\)

\(=\dfrac{x+1}{x-5}-\dfrac{x-18}{x-5}+\dfrac{x+2}{x-5}\)

\(=\dfrac{x+1-x+18+x+2}{x-5}=\dfrac{3x-15}{x-5}=3\)


Các câu hỏi tương tự
gojo  satoru
Xem chi tiết
Tiên Hồ Đỗ Thị Cẩm
Xem chi tiết
phan tran vy lan
Xem chi tiết
Chu Huy Hải
Xem chi tiết
Bùi Phạm 2007
Xem chi tiết
Đỗ Thị Thanh Hằng
Xem chi tiết
Ken Bảo
Xem chi tiết
Lê Ngọc Hùng Dũng
Xem chi tiết
lehantu
Xem chi tiết