a: Xét ΔADB vuông tại D và ΔCAB vuông tại A có
góc B chung
=>ΔADB đồng dạng với ΔCAB
b: BC=căn 12^2+9^2=15cm
AD=12*9/15=7,2cm
a: Xét ΔADB vuông tại D và ΔCAB vuông tại A có
góc B chung
=>ΔADB đồng dạng với ΔCAB
b: BC=căn 12^2+9^2=15cm
AD=12*9/15=7,2cm
cho tam giác ABC vuông tại A, đường cao AD . trên tia đối của tia CB lấy điểm E sao cho AC là tia phân giác của góc DAE.
a\ cmr : tam giác ADB đồng dạng với tam giác CAB
b\ bt AB=12 cm, AC=9cm . tính AD
c\ cmr : CDtrên CE=BD trên DE
cho tam giác ABC vuông tại A, đường cao AD . trên tia đối của tia CB lấy điểm E sao cho AC là tia phân giác của góc DAE.
a\ cmr : tam giác ADB đồng dạng với tam giác CAB
b\ bt AB=12 cm, AC=9cm . tính AD
c\ cmr : CDtrên CE=BD trên DE
1. cho tam giác abc cân tại a, đường cao ad. kẻ dh vuông góc với ac. gọi i là trung điểm của dh. cmr ai vuông góc với bh
2. cho tam giác abc có góc a nhọn, vẽ các đường cao bd và ce. trên tia đối của bd lấy điểm i sao cho ib=ac, trên tia đối của ce lấy điểm k sao cho ck=ab. cmr tam giác aik vuông cân
nhanh giùm mình nhé, tối nay mình phải đi học rồi T.T
Bài 1
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB
Bài 3 Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH, E là giao điểm của BI và AC. Tính các độ dài AE và EC, biết AH = 12 cm, BC = 18 cm
1. Cho tam giác ABC có AB=2, AC=3 đường phân giác AD=1,2. Tính góc BAC.
2.Cho tam giác ABC cân tại A, góc A= 155 độ. Trên BC lấy M, N sao cho AM vuông góc AC, AN vuông góc AB. CMR: BM^2=BC.MN.
3. Cho tam giác ABC cân tại A, đặt BC=a, AC=b. Vẽ các đường phân giác BD, CE.
a) CM: DE//BC
b) Tính DE từ đó suy ra 1/DE=1/a+1/b.
4) Cho tam giác ABC đều. Gọi O là trung điểm BC. Trên các cạnh AB và AC lần lượt lấy các điểmM,N sao cho góc MON=60 độ,CMR:
a) tam giác OMB đồng dạng tam giác NOC. từ đó suy ra BM.CN ko đổi.
b) các tia MO,NO lần lượt là các tia phân giác của góc BMN và góc CNM.
c) chu vi tam giác AMN ko đổi.
Giúp mình với nha, mình cần gấp trong hôm nay.
Cho tam giác ABC vuông tại a . Trên tia đối của tia ab lấy điểm d sao cho ab=ad
a) CM tam giác ABC = tam giác adc
b) trên tia đối của tia ac lấy điểm e sao cho ac = ae . Cm dc//be
C) lấy điểm i là trung điểm đc . Cm be = 2.ai
Cho tam giác ABC vuông tại A, có AB/BC = 4/5, AC = 18 cm. Vẽ đường phân giác BD của tam giác ABC. Trên cạnh AB lấy điểm H sao cho AH/AB = 1/3, từ B vẽ đường thẳng vuông góc với đường thẳng HC tại E, đường thẳng BE cắt đường thẳng AC tại F. Biết AD = 8 cm, DC = 10cm và tam giác HAY đồng dạng tam giác HEB.
a/ CM: AF.AC = 1/3 AB^2
b/ Trên Tia đối của tia FA lấy điểm M sao cho FM = 2FA. CM: MB vuông góc BC
( MỌI NGƯỜI GIÚP EM VỚI EM NỘP BÀI GẤP)
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.