\(10A=\dfrac{10^{2021}+10}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)
\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
mà 2021<2022
nên A>B
\(10A=\dfrac{10^{2021}+10}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)
\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
mà 2021<2022
nên A>B
1. So sánh
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\) và B= \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{13}{60}\)
b) \(C=\dfrac{2019}{2021}+\dfrac{2021}{2022}\) và \(D=\dfrac{2020+2022}{2019+2021}.\dfrac{3}{2}\)
so sánh:
a)C= \(\dfrac{100^{99}+1}{100^{100}+1}\) và D= \(\dfrac{100^{100}+1}{100^{101}+1}\)
b)E=\(\dfrac{2020^{2021}+1}{2020^{2022}+1}\) và F=\(\dfrac{2020^{2020}+1}{2020^{2021}+1}\)
Thực hiện phép tính:
a) 2021 - \(\left(\dfrac{1}{3}\right)^2\) . 32
b \(\dfrac{5}{10}\) + 9 . \(\dfrac{-3}{2}\)
c) -10 . \(\left(-\dfrac{2021}{2022}\right)^0\) + \(\left(\dfrac{2}{5}\right)^2\) : 2
\(\dfrac{2021}{2021^2+1}và\dfrac{2022}{2022^2+1}\)so sánh
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2021^2}\). So sánh A và \(\dfrac{2020}{2021}\)
so sánh
\(\dfrac{10^{2023}-3}{10^{2024}-3}\)
và
\(\dfrac{10^{2022}+1}{10^{2023}+1}\)
So sánh:
a) \(\dfrac{-11}{12};\dfrac{17}{-18}\)
b) \(\dfrac{-14}{-21};\dfrac{-60}{-72}\)
c) \(\dfrac{2135}{13790};\dfrac{4}{3}\)
d) \(\dfrac{2022}{2021};\dfrac{10}{9}\)
e) \(\dfrac{35}{36};\dfrac{16}{17}\)
f) -1,3; -1,2
giúp mình với, mình cảm ơn
Tính : S = \(1-\dfrac{1}{2}+\dfrac{1}{3}-\)\(\dfrac{1}{4}+...+\dfrac{1}{2019}-\dfrac{1}{2020}+\dfrac{1}{2021}\)và
P = \(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}+...+\dfrac{1}{2020}+\dfrac{1}{2021}\)
Tính : \(\left(S-P\right)^{2022}\)
1) Tìm GTNN của biểu thức A= (|x| + 1)^10 + 2023
2) So sánh A và B:
A = 2022^2022 + 1 / 2022^2023 + 1 và B = 2022^2021 + 1 / 2022^2022 + 1
3) Thực hiện phép tính 1 cách hợp lí:
5^16 . 27^7/125^5 . 9^11
Do em ko biết viết phân số và mũ nên em viết hơi khó đọc mong mọi người thông cảm!😥
Cảm ơn mọi người giải giúp!
So sánh
a)\(\frac{-60}{12}\)và -0,8
b) \(\frac{2020}{2019}\)và \(\frac{2021}{2020}\)
c) \(\frac{10^{2018}+1}{10^{2019}+1}\)và \(\frac{10^{2019}+1}{10^{2020+1}}\)