C = \(\frac{1}{5}\)+\(\frac{1}{10}\)+\(\frac{1}{20}\)+\(\frac{1}{40}\)+\(\frac{1}{80}\)+........+\(\frac{1}{1280}\)
2C = 2 . ( \(\frac{1}{5}\)+\(\frac{1}{10}\)+.......+\(\frac{1}{1280}\))
2C = \(\frac{2}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{10}\)+.....+\(\frac{1}{1280}\)
2C-C = ( \(\frac{2}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{10}\)+......+\(\frac{1}{1280}\)) - (\(\frac{1}{5}\)+\(\frac{1}{10}\)+.....+\(\frac{1}{1280}\))
C . ( 2-1) = \(\frac{2}{5}\)
C = \(\frac{2}{5}\)
Vậy C = \(\frac{2}{5}\)
\(C=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+........+\frac{1}{1280}\)
\(\Rightarrow2C=2\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+...........+\frac{1}{1280}\right)\)
\(\Rightarrow2C=\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+.............+\frac{1}{1280}\)
\(\Rightarrow2C-C=\left(\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+............+\frac{1}{1280}\right)-\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+...........+\frac{1}{1280}\right)\)
\(\Rightarrow C=\frac{2}{5}-\frac{1}{1280}\)
\(\Rightarrow C=\frac{512}{1280}-\frac{1}{1280}\)
\(\Rightarrow C=\frac{511}{1280}\)
Vậy C = \(\frac{511}{1280}\)