a: Xét ΔAME vuông tại E và ΔCMF vuông tại F có
MA=MC
góc AME=góc CMF
=>ΔAME=ΔCMF
b: BE+BF=2BE+EF
=2BE+2ME
=2BM>2BA
=>AB<(BE+BF)/2
a: Xét ΔAME vuông tại E và ΔCMF vuông tại F có
MA=MC
góc AME=góc CMF
=>ΔAME=ΔCMF
b: BE+BF=2BE+EF
=2BE+2ME
=2BM>2BA
=>AB<(BE+BF)/2
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh rằng AB < (BE + BF) / 2 .
1 ) Cho tam giác ABC , D nằm giữa A và C sao cho BD không vuông góc với AC . Gọi E và F là chân các đường vuông góc vẽ từ A và C đến đường thẳng BD . So sánh AD với tổng AE + CF
2 ) Cho tam giác ABC vuông tại A , M là trung điểm của AC . Gọi E và F là chân các đường vuông góc vẽ từ A và C đến đường thẳng BM . Chứng minh rằng : AB < BE + BF / 2
Cho tam giác ABC vuông tại A, M là trung điểm AC. Gọi E,F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh AB<(BE+BF)/2
Cho vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh rằng:
a) ME = MF
b) BE + BF = 2MB
c) AB < BM
d) AB < (BE+BF):2
cho tam giác abc vuông tại A, M là trung điểm của AC gọi E và F là chân các đường vuông góc từ AC đến đường thẳng BM chứng minh rằng AB < BE + BF chia cho 2
Cho tam giác ABC vuông tại A . M là trung điểm của AC . Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và C đến BM . Chứng miinh rằng AB < BE+BF/2
cho tam giác ABC vuông tại A. Đường trung tuyến BM. Gọi E,F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh rằng:
a) ME= MF
b)AB < BE+BF/2
Bài 9. Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của AC. Gọi E, F theo thứ tự là
chân đường vuông góc kẻ từ A và C đến đường thẳng BM.
a)So sánh AC với tổng AE CF.
b)chứng minh rằng:\(AB< \frac{1}{2}\left(BE=BF\right)\)
cho tam giác abc vuông tại A, M là trung điểm của AC gọi E và F là chân các đường vuông góc từ AC đến đường thẳng BM chứng minh rằng AB < BE + BF chia cho 2