a) Đặt A(x)=0
\(\Leftrightarrow4x-1=0\)
\(\Leftrightarrow4x=1\)
hay \(x=\dfrac{1}{4}\)
b) Đặt B(x)=0
\(\Leftrightarrow2x^2-8=0\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
c) Đặt C(x)=0
\(\Leftrightarrow x^2+1=0\)
mà \(x^2+1\ge1>0\forall x\)
nên \(x\in\varnothing\)
d) Đặt D(x)=0
\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{2}{3};\dfrac{3}{2}\right\}\)
e) Đặt F(x)=0
\(\Leftrightarrow5-x^2=0\)
\(\Leftrightarrow x^2=5\)
hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
f) Đặt B(x)=0
\(\Leftrightarrow\left(\dfrac{1}{2}-x\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}-x=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
g) Đặt C(x)=0
\(\Leftrightarrow3x^2-x=0\)
\(\Leftrightarrow x\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\dfrac{1}{3}\right\}\)
h) Đặt D(x)=0
\(\Leftrightarrow\dfrac{1}{2}x^2+x^3=0\)
\(\Leftrightarrow x^2\left(\dfrac{1}{2}+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\\dfrac{1}{2}+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-\dfrac{1}{2}\right\}\)