.Biểu thức \(A=2\left(3x-1\right)^2+6\left(x+6\right)^2+4\)đạt giá trị nhỏ nhất tại x là
Tìm giá trị của x để biểu thức M=\(\left(2x+5\right)^2+2x\left(3x-4\right)-\left(x^2+22\right)\) đạt giá trị nhỏ nhất và giá trị nhỏ nhất bằng bao nhiêu?
Các bạn giúp mình với
\(A=\left(\dfrac{x}{x-3}-\dfrac{x-1}{x^2-x-6}\right):\left(\dfrac{x}{x+2}+\dfrac{5x+1}{x^2-x-6}\right)\)
1)Tìm x để giá trị của biểu thức A đc xác định.Rút gọn biểu thức A
2)Tìm x để biểu thức A đạt giá trị nhỏ nhất
Cho biểu thức: P=\([\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}\)\(+\frac{1}{x^1-1}]:\frac{2x}{x^3+x}\)
a) Rút gọn biểu thức P.
b) Với x bằng bao nhiêu thì P đạt giá trị nhỏ nhất?
tìm giá trị nhỏ nhất của biểu thức
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
Xét biểu thức A=\(\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\\ \)
a) Rút gọn M
b)Tìm x để M đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
Bài 1. Cho biểu thức:\(A=\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
a) Rút gọn A.
b) Tính giá trị của biểu thức khi \(\left|x\right|=\dfrac{1}{2}\)
c) Tìm các giá trị nghuyên của để A có giá trị nguyên.
Rút gọn rồi tính các giá trị biểu thức sau
a, A= \(\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(9x^2-4\right)\) tại x= \(\frac{-1}{3}\)
b, B=\(\left(x+y-7\right)^2-2\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\) tại x= 101
c, C= \(4x^2-20x+27\) tại x=52,5