Cho hàm số f(x)=(2 x +m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
B. 3
C. 0
D. 2
Cho hàm số y= 2 x + 1 1 3 + m 2 + m (m là tham số). Biết rằng có hai giá trị m 1 ; m 2 để giá trị lớn nhất của hàm số y=f(x) trên đoạn 7 12 ; 13 bằng 8. Tính .
A. T=9
B. T=4
C. T=36
D. T=25
Cho hàm số f ( x ) = sin x - m sin x + 1 . Tìm giá trị của tham số m để giá trị lớn nhất của hàm số trên đoạn 0 ; 2 π 3 bằng -2?
A. m = 5
B. m = 5 m = 2
C. m = 2
D. m = 3
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f ( x ) = 2 x 3 + 3 x 2 - 1 trên đoạn - 2 ; - 1 2 . Tính P=M-m.
A. P=-5
B. P=1
C. P=5
D. P=4
Số các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = x - m 2 + m x + 1 trên đoạn [0;1] bằng -2 là:
A. 2
B. 0
C. 3
D. 1
Cho hàm số f x = x - m 2 + m x + 1 . Tìm giá trị của tham số m để giá trị nhỏ nhất của hàm số f(x) trên đoạn [ 0;1 ] bằng -2
A. m ∈ - 1 ; 2
B. m ∈ 1 ; - 2
C. m ∈ 1 ; 2
D. m ∈ - 1 ; - 2
Cho hàm số y = m x + 1 2 x − 1 (m là tham số, m ≠ 2 ). Gọi a, b lần lượt giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên 1 ; 3 . Khi đó có bao nhiêu giá trị của m để a . b = 1 5 .
A. 0
B. 2
C. 1
D. 3
Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e
Cho hàm số y=f(x) liên tục, không âm trên R thỏa mãn f ( x ) . f ' ( x ) = 2 x f ( x ) 2 + 1 và f(0)=0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=f(x) trên đoạn [1;3] lần lượt là:
A. M=20;m=2
B. M = 4 11 ; m = 3
C. M = 20 ; m = 2
D. M = 3 11 ; m = 3