- Dễ dàng nhận thấy \(x=-1\) không phải là 1 nghiệm của đa thức P(x).
- Gọi b là 1 nghiệm của đa thức \(P\left(x\right)=x^3+3x^2-1\)
Do đó: \(b^3+3b^2-1=0\)
\(\Rightarrow\left(b^3+3b^2+3b+1\right)-3\left(b+1\right)+1=0\)
\(\Rightarrow\left(b+1\right)^3-3\left(b+1\right)+1=0\)
\(\Rightarrow\dfrac{\left(b+1\right)^3-3\left(b+1\right)+1}{\left(b+1\right)^3}=0\)
\(\Rightarrow\left(\dfrac{1}{b+1}\right)^3-3.\left(\dfrac{1}{b+1}\right)^2+1=0\)
\(\Rightarrow\left(-\dfrac{1}{b+1}\right)^3+3.\left(-\dfrac{1}{b+1}\right)^2-1=0\)
Thay \(x=-\dfrac{1}{b+1}\) vào \(P\left(x\right)=x^3+3x^2-1\) ta được:
\(P\left(-\dfrac{1}{b+1}\right)=\left(-\dfrac{1}{b+1}\right)^3+3.\left(-\dfrac{1}{b+1}\right)^2-1=0\)
\(\Rightarrow-\dfrac{1}{b+1}\) là một nghiệm của đa thức P(x).
Đặt \(a=-\dfrac{1}{b+1}\Rightarrow ab+a+1=0\) \(\Rightarrowđpcm\)