Đồ thị hàm số y = f(x) đối xứng với đồ thị của hàm số y = a x ( a > 0 , a ≠ 1 ) qua điểm I(1;1). Giá trị của biểu thức 2 + log a 1 2018 bằng
![]()
![]()
![]()
![]()
Đồ thị hàm số y = f(x) đối xứng với đồ thị hàm số y = log a x ( 0 < a ≠ 1 ) qua điểm I(2; 1). Giá trị của biểu thức f ( 4 - a 2019 ) bằng
A. 2023
B. -2023
C. 2017
D. -2017
Cho (C) là đồ thị của hàm số y=(x-2)/(x+1) và đường thẳng d:y=mx+1. Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A.![]()
B.![]()
C.![]()
D. ![]()
Cho hàm số: y = x3+2mx2+3(m-1)x+2 có đồ thị (C) . Đường thẳng d: y= - x+2 cắt đồ thị (C) tại ba điểm phân biệt A(0; -2); B và C. Với M(3;1) giá trị của tham số m để tam giác MBC có diện tích bằng 2 7 là
A. m=-1
B. m=-1 hoặc m=4
C. m=4
D. Không tồn tại m
Biết hai điểm B(a; b), C(c; d) thuộc hai nhánh của đồ thị hàm số y = 2 x x - 1 sao cho tam giác ABC vuông cân tại đỉnh A(2; 0), khi đó giá trị biểu thức T=ab+cd bằng:
A. 6
B. 0
C. -9
D. 8
Biết hai điểm B(a; b), C(c; d) thuộc hai nhánh của đồ thị hàm số y = 2 x x - 1 sao cho tam giác ABC vuông cân tại đỉnh A(2; 0), khi đó giá trị biểu thức T=ab + cd bằng:
A. 6
B. 0
C. -9
D. 8
Cho hàm số có đồ thị (C) y = 2 x + 1 x - 1 và đường thẳng d: y=x+m. Đường thẳng d cắt đồ thị (C) tại hai điểm A và B. Với C( -2; 5) , giá trị của tham số m để tam giác ABC đều là
A.m=1
B.m=1 hoặc m=5
C.m=5
D.m=-5
Đồ thị hàm số y = f ( x ) đối xứng với đồ thị hàm số y = log a x ; ( 0 < a ≠ 1 ) qua điểm I 2 ; 1 . Giá trị của biểu thức f 4 - a 2019 bằng
A. 2023
B. -2023
C. 2017
D. -2017
Đồ thị hàm số y = f(x) đối xứng với đồ thị hàm số y = log a x ; ( 0 < a ≠ 1 ) qua điểm I(2;1). Giá trị của biểu thức f ( 4 - a 2019 ) bằng
A. 2023
B. -2023
C. 2017
D. -2017