\(B=2\left(a^3+b^3\right)=2\left(a+b\right)^3-6ab\left(a+b\right)=2\cdot\left(-9\right)^3-6\cdot20\cdot\left(-9\right)=-378\)
\(B=2\left(a^3+b^3\right)=2\left(a+b\right)^3-6ab\left(a+b\right)=2\cdot\left(-9\right)^3-6\cdot20\cdot\left(-9\right)=-378\)
Cho biểu thức P =\(\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2a+2c-b\right)^2\)
1) Chứng minh P =\(9\left(a^2+b^2+c^2\right)\)
2)Nếu a,b,c là các số thực thỏa mãn ab + bc + ca = -1, tìm giá trị nhỏ nhất của biểu thức P
\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0
Nếu 1/a - 1/b = 1 và a, b là các số thực khác 0 và 2a + 3ab - 2b khác 0. Giá trị của biểu thức P = ( a - 2ab - b) / (2a + 3ab - 2b) là
Nếu \(\frac{1}{a}-\frac{1}{b}=1\) và a,b là các số thực khác 0 và 2a +3ab-2b khác 0. Giá trị của biểu thức (a-2ab-b)/(2a+3ab-2b) là
Cho các số thực a, b, c thỏa mãn a^2 + b^2 + c^2 = 9. Tính giá trị biểu thức S = (2a + 2b -c )^2 + (2b + 2c -a)^2 + (2c + 2a -b)^2
Cho biểu thức:
A=\((\frac{1}{2a+b}-\)\(\frac{a^2-1}{2a^3-b+2a-a^2b})\): \((\frac{4a+2b}{a^3b+ab}-\frac{2}{a})\)
a,Rút gọn A
b, Tính giá trị của A biết 4a2+b2 = 5ab và a>b>0
1.Biết a-2b=5, hãy tính giá trị của biểu thức :P=(3a-2b)/(2a+5)+(3b-a)/(b-5)
2.Cho a+b+c=0.Tính giá trị của các biểu thức sau:
A=1/(a^2+b^2-c^2)+1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)
Cho biểu thức: A=\(\left(\frac{1}{2a+b}-\frac{a^2-1}{2a^3-b+2a-a^2b}\right)\times\)\(\left(\frac{4a+2b}{a^3b+ab}-\frac{2}{a}\right)\)
a) Rút gọn A
b) Tính giá trị A biết 4a2+b2= 5ab và a>b>0
cho A^2+B^2=M.tính giá trị của biểu thức sau:
A=(2A+2B-2)+(2B+2C-A)^2+(2C+2A-B)^2