Cho f(x) là hàm liên tục trên đoạn [0;a] thỏa mãn f ( x ) . f ( a - x ) = 1 f ( x ) > 0 ; ∀ x ∈ [ 0 ; a ] và ∫ 0 a d x 1 + f ( x ) = b a c , trong đó b, c là hai số nguyên dương và b/c là phân số tối giản. Khi đó b+c có giá trị thuộc khoảng nào dưới đây?
A. (11;22)
B. (0;9)
C. (7;21)
D. (2017;2020)
Biết rằng 9x + 9–x = 23. Khi đó biểu thức A = 5 + 3 x + 3 - x 1 - 3 x - 3 - x = a b với a b là phân số tối giản và a , b ∈ ℤ . Tích a.b có giá trị bằng
A. 10.
B. 8.
C. -8.
D. -10.
Cho hàm số f ( x ) = ln ( 1 - 4 ( 2 x - 1 ) 2 ) . Biết rằng f ( 2 ) + f ( 3 ) + . . . + f ( 2020 ) = ln a b , trong đó a b là phân số tối giản, a , b ∈ N * . Tính b -3a
A. -2
B. 3
C. -1
D. 1
Cho ∫ 0 1 3 x + 3 - 10 ( x + 3 ) 2 d x = 3 ln a b - 5 6 , trong đó a, b là 2 số nguyên dương và a/b là phân số tối giản. Mệnh đề nào dưới đây đúng?
A. ab = – 5
B. ab = 12
C. ab = 6
D. ab = 5/4
Cho hàm số f ( x ) = ln 1 - 4 ( 2 x - 1 ) 2 . Biết rằng ,f(2) + f(3) + ....+f(2020) = ln a b trong đó a b , là phân số tối giản, a, b ∈ ℕ * . Tính b - 3a
A. -2
B. 3
C. -1
D. 1
Cho ∫ 0 1 ( 3 x + 3 - 10 ( x + 3 ) 2 ) d x = 3 ln a b - 5 6 , trong đó a, b là 2 số nguyên dương và a b là phân số tối giản. Mệnh đề nào dưới đây đúng ?
Cho biết ∫ 0 1 x 2 . e x ( x + 2 ) 2 d x = a b e + c với a,c là các số nguyên , b là số nguyên dương và a/b là phân số tối giản. Tính a-b+c
A. 3.
B. 0.
C. 2.
D. -3.
Biết ∫ 0 π 4 ( 1 + tan x ) 5 cos 2 x d x = a b ; trong đó a,b là 2 số nguyên dương và a/b là phân số tối giản. Mệnhđề nào dưới đây đúng?
A. a<b
B. ab = 1
C. a-10b = 1
D. a2 + b2 = 1
hàm số f ( x ) = ln 1 - 1 x 2 . Biết rằng f ( 2 ) + F ( 3 ) + . . . + f ( 2018 ) = ln a - ln b + ln c - ln d với a, b, c, d là các số nguyên dương, trong đó a, c, d là các số nguyên tố và a<b<c<d. Tính P=a+b+c+d
A. 1986
B. 1698
C. 1689
D. 1968