\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+2}\right):\dfrac{x+4}{\sqrt{x}+2}\left(dkxd:x\ne4\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right).\left(\dfrac{\sqrt{x}+2}{x+4}\right)\)
\(=\dfrac{x+2\sqrt{x}-2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{x+4}\)
\(=\dfrac{x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{x+4}\)
\(=\dfrac{1}{\sqrt{x}-2}\)
Vậy \(B=\dfrac{1}{\sqrt{x}-2}\)