Đáp án B
Dựa vào BBT ta thấy lim x → − 1 = ∞ , lim x → ∞ m = − 2 → loại C, D
Mặt khác hàm số là hàm nghịch biến nên y ' < 0 ∀ x ≠ − 1
Đáp án B
Dựa vào BBT ta thấy lim x → − 1 = ∞ , lim x → ∞ m = − 2 → loại C, D
Mặt khác hàm số là hàm nghịch biến nên y ' < 0 ∀ x ≠ − 1
Cho hàm số y = f (x) có bảng biến thiên như hình vẽ bên. Số nghiệm của phương trình f x − 1 = 2 là:
A. 5
B. 4
C. 2
D. 3
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ bên
Số nghiệm của phương trình |f(x)|=2 là
A. 3.
B. 6.
C. 4.
D. 5.
Cho hàm số y = x 3 − 6 x 2 + 9 x − 1 và các mệnh đề sau:
(1) Hàm số đồng biến trên các khoảng − ∞ ; 1 và 3 ; + ∞
nghịch biến trên khoảng (1;3)
(2) Hàm số đạt cực đại tại x = 3và x = 1
(3) Hàm số có y C D + 3 y C T = 0
(4) Hàm số có bảng biến thiên và đồ thị như hình vẽ.
Tìm số mệnh đề đúng trong các mệnh đề trên.
A. 1
B. 4
C. 2
D. 3
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ bên:
Số nghiệm của phương trình f(x) - 2=0 là:
A. 1.
B. 2.
C. 0.
D. 3.
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên:
Số nghiệm của phương trình f(x) – 2 = 0 là:
A. 0
B. 1
C. 3
D. 2
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên và f(-2) = 3. Tập nghiệm của bất phương trình f(x) > 3 là
A. S = - 2 ; 2
B. S = - ∞ ; - 2
C. S = - ∞ ; - 2 ∪ 2 ; + ∞
D. S = - 2 ; + ∞
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Bảng biến thiên của hàm số y=f'(x) được cho như hình vẽ bên. Hàm số y = f ( 1 - x 2 ) + x nghịch biến trên khoảng
A. (-4;-2)
B. (2;4)
C. (0;2)
D. (-2;0)
Một học sinh khảo sát sự biến thiên của hàm số như sau:
I. Tập xác định: D = ℝ
II. Sự biến thiên: y ' = x 2 − x − 2 ; y ' = 0 ⇔ x = − 1 x = 2
lim x → − ∞ y = − ∞ ; lim x → + ∞ y = + ∞
III. Bảng biến thiên:
IV. Vậy hàm số đồng biến trên nghịch biến trên khoảng
−
∞
;
−
1
∪
2
;
+
∞
, nghịch biến trên khoảng
−
1
;
2
Lời giải trên sai từ bước nào?
A. Bước IV
B. Bước I
C. Bước II
D. Bước III
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ bên dưới.
Số nghiệm thực của phương trình |2f(x)-1|=3 là
A. 3.
B. 4.
C. 2.
D. 5.
Cho hàm số y=f(x) có đồ thị đạo hàm y=f’(x) được cho như hình vẽ bên và các mệnh đề sau:
(1). Hàm số y=f(x) có duy nhất 1 điểm cực trị
(2). Hàm số y=f(x) nghịch biến trên khoảng (-2;1)
(3). Hàm số y=f(x) đồng biến trên khoảng 0 ; + ∞
(4). Hàm số g x = f x + x 2 có 2 điểm cực trị.
Số mệnh đề đúng là
A. 1
B. 3
C. 4
D. 2