1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
Ta có: HB=HC
mà HB+HC=BC=8cm
nên \(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
Ta có: ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
2: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(AN=NC=\dfrac{AC}{2}\)
mà AB=AC
nên AM=MB=AN=NC
Xét ΔANB và ΔAMC có
AN=AM
\(\widehat{NAB}\) chung
AB=AC
Do đó: ΔANB=ΔAMC
=>BN=CM và \(\widehat{ABN}=\widehat{ACM}\)
3: Xét ΔMBC và ΔNCB có
MB=NC
MC=NB
BC chung
Do đó: ΔMBC=ΔNCB
=>\(\widehat{KBC}=\widehat{KCB}\)
=>ΔKBC cân tại K
=>KB=KC