Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tth_new

Bài toán. Cho \(x,y,z>0,x+y+z\le k\). Chứng minh:

\(\frac{1}{x^2+y^2+z^2}+\frac{2m^2}{xy+yz+zx}\ge\frac{\left(1+2m\right)^2}{k^2}\)

Nói chung, cách chứng minh bài này không có gì khó, thậm chí có thể nói là rất dễ. Vì:;

\(\frac{1}{x^2+y^2+z^2}+\frac{2m^2}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{\left(2m\right)^2}{2\left(xy+yz+zx\right)}\)

\(\ge\frac{\left(1+2m\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\frac{\left(1+2m\right)^2}{\left(x+y+z\right)^2}=\frac{\left(1+2m\right)^2}{k^2}\)

Vậy, vấn đề ở đây không phải là lời giải, mà là dấu đẳng thức.

Quan sát một chút ta thấy x, y, z là đối xứng nhau và điều kiện là \(x+y+z=1\).

Nên ta đoán \(\hept{\begin{cases}x=y=t\\x+y+z=k\end{cases}}\Rightarrow z=k-2t\left(0\le t\le\frac{k}{2}\right)\)   (*)

Ta xét: \(P\left(x,y,z\right)=\frac{1}{x^2+y^2+z^2}+\frac{2m^2}{xy+yz+zx}\)

Chọn t sao cho \(P\left(t,t,k-2t\right)=\frac{\left(1+2m\right)^2}{k^2}\) 

Quy đồng lên và phân tích thành nhân tử, nó tương đương với: \(k^2m-4kmt+6mt^2-2kt+3t^2=0\)

Dùng công thức nghiệm của phương trình bậc 2, dễ có: \(t_1=\frac{k\left(1+2m+\sqrt{-2m^2+m+1}\right)}{3\left(1+2m\right)},t_2=\frac{k\left(-1-2m+\sqrt{-2m^2+m+1}\right)}{3\left(1+2m\right)}\)

Cần chú ý rằng, tùy vào tham số k, m ở từng bài mà \(-2m^2+m+1,t_1,t_2\) có thể âm hoặc dương nên sau đó ta cần..(Không biết nói  sao cho hay hết! Các bạn tự hiểu nha :D)

Với \(m=\frac{1}{\sqrt{2}}\)ta được bài https://olm.vn/hoi-dap/detail/259605114604.html

Lưu ý. Không phải lúc nào ta cũng may mắn có được như (*), có khi các biến hoàn toàn đối xứng nhưng đẳng thức lại xảy ra hoàn toàn lệch nhau! Chính vì vậy, bài trên dù dấu đẳng thức xấu nhưng ta vẫn "còn may".

Nếu không việc tìm dấu đẳng thức còn mệt hơn nhiều :D


Các câu hỏi tương tự
ta thi hong hai Tathpthu...
Xem chi tiết
Trà Nhật Đông
Xem chi tiết
Xem chi tiết
Hà My Trần
Xem chi tiết
Ngô Minh Tâm
Xem chi tiết
Vương Băng Khanh
Xem chi tiết
Phạm Phước Thịnh
Xem chi tiết
Ai Ai
Xem chi tiết
Lưu Đức Mạnh
Xem chi tiết